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ABSTRACT 

 

Automated separation of reconstructed bone joints from 3D medical images is a 

challenging task due to surrounding soft tissue and adjacent bones that can affect the clarity 

of bone boundaries.  Existing approaches typically require human intervention to correct 

improper results of segmentation before the joint model is reconstructed.  This dissertation 

presents a new methodology for separating bone joint models using a completely automated 

approach.  Rather than trying to offer a solution for segmenting medical images, the proposed 

method first allows errors in the reconstructed model and later removes these errors without 

the help of a medical expert or technician.  This method utilizes known anatomical 

information from a generic CAD model, which is a properly generated model of the anatomy 

of a similar human subject, with regard to age, gender, height, etc.  The intent is to aid in the 

separation of bones in the joint areas by comparing the reconstructed model that might 

contain errors to the generic model which has individual bones separated properly.  The 

human hip joint is employed as an example of algorithm implementation in this dissertation.  

The proposed method is a general approach that should be adequately flexible to extend to 

other type of joints such as knee and elbow. 
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CHAPTER 1. INTRODUCTION 

 

With the development of advanced medical imaging technology, three-dimensional 

(3D) models can be generated using cross sectional medical images from methods such as 

computed tomography (CT) or magnetic resonance imaging (MRI).  CT scanning is a widely 

used medical imaging technique most suitable for capturing dense tissues (bone structures).  

On the other hand, MRI is best suited for soft tissues such as brain or other objects like 

ligaments.  The images from both techniques use the difference of grey scale, similar to x-ray 

images, in order to distinguish the object from the background.  However, the images from 

CT and MRI are the cross sectional slices of the body along one axis while an x-ray image is 

the projection of the object onto one plane.  Figure 1.1 illustrates x-ray, CT, and MRI images.   

 

 

 

 

 

 

 

The series of cross sectional images can be stacked in order to recreate a 3D object 

(Figure 1.2).  The images are used by surgeons and radiologists in clinical procedures 

ranging from diagnosis to surgery planning.  Other users outside the medical field include, 

for example; manufacturers who design and develop prostheses or computer graphics users 

who create simulations and animations.  Due to the complexity of internal objects, people 

outside the medical field may find it difficult to reconstruct 3D models from the images 

 

(a) X-ray (pelvis) (b) CT (Hip “socket”) (c) MRI (Brain) 

Figure 1.1. Medical images 
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because they lack sufficient knowledge of human anatomy.  The goal of this dissertation is to 

investigate a new methodology to automatically create these models using robust computer 

algorithms rather than skill and tedious work. 

 

 

 

 

 

 

 

 

           

An important step before reconstructing 3D models from slice images is image 

segmentation.  Image segmentation is a process that distinguishes the object of interest from 

the image background.  There are two levels of segmentation: low-level segmentation and 

high-level segmentation (Bohm et al., 1999).  Low-level segmentation refers to a process that 

detects and retrieves important features from the image and translating into explicit data.  For 

instance, the simplest low-level segmentation technique uses thresholding to extract objects 

from the image.  In a thresholding operation, pixel values below the threshold values will be 

set to background pixels while those above the threshold values will be set to object pixels.  

Figure 1.3 illustrates the process to extract a 2D contour from a CT image using the 

thresholding method.  

 

 

 

(a)  (b)  

Figure 1.2 - CT images and model: (a) stack of images and (b) 3D model 
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High-level segmentation refers to a process that interprets the result of low-level 

segmentation as well as extracts and registers individual objects separately when there is 

more than one object in the CT images.  High-level segmentation requires prior medical 

knowledge about the object in order to identify and separate the objects from one another.  If 

the result from low-level segmentation is directly used for reconstructing the bone joint, 

bones that are too close (touching in some cases) can be mistakenly combined if the low-

level segmentation fails to create a clear boundary.  On the other hand, even when bone 

boundaries are completely separated by low-level segmentation, the relations of contours or 

cross-sections between image slices are not identified; one cannot tell which bone is which 

(e.g., the pelvis and the femur that comprise a hip joint).  The problems are described as the 

correspondence and branching problems (Park et al., 1995, Bajaj et al.,1996, and Ryu et al., 

2004).  Since the reconstruction process is not intelligent enough to recognize the individual 

bones, each bone should be separately created.  Otherwise, the resulting 3D model will have 

all bones combined.  In this dissertation, the combined areas are called welded regions since 

they appear similar to welded joints in manufacturing processes.  Figure 1.4a illustrates an 

example result of using only low-level segmentation to reconstruct a hip joint from CT 

images.  The individual bones are not recognized and created separately in a reliable fashion.  

Figure 1.3. Extracting 2D contour by thresholding: (a) CT image, (b) 
thresholding result, and (c) contour extraction 

 

(a) (b) (c) 
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The result shows the femur and pelvis are combined after low-level segmentation.  Thus, 

high-level segmentation is used to disconnect these two bones as shown in Figure 1.4b.   

 

 

 

 

 

 

 

 

High-level segmentation is not a simple task and is usually performed or directed by 

medical experts who are trained or familiar with the anatomy.  The steps of high-level 

segmentation are illustrated in Figure 1.5.  The CT image of a hip joint where the femur and 

pelvis are physically adjacent is shown in Figure 1.5a.  As can be seen, the contours of the 

femur and pelvis are not separated after the low-level segmentation process (Figure 1.5b).  

High-level segmentation is manually performed to properly correct the results of low-level 

segmentation (Figure 1.5c).  Finally, each contour is assigned to an individual bone as shown 

in Figure 1.5d.  The manual approach is a time consuming and tedious task because this 

modification must be repeated for tens or hundreds of slice images.  This dissertation 

assumes medical experts are not available when high-level segmentation is considered 

necessary.  An automated system for high-level segmentation is a challenging and unsolved 

problem.   This dissertation specifically focuses on developing an automated system to 

perform high-level segmentation of complex bone structures.  In the current work, a human 

hip joint is adopted as an example of the complex structures. 

 

Figure 1.4. Low-level segmentation and high-level segmentation: (a) hip joint after 
low-level segmentation and (b) hip joint after high-level segmentation 

(a)  

Femur 
Pelvis Femur and Pelvis 

are combined 
(welded regions) 

(b)  
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In order to substitute the required knowledge of the human anatomy in high-level 

segmentation, the proposed method employs a generic model as the prior known information.  

The generic model is a complete model of the bone structure without errors (bones are all 

separated) and with the same orientation as the CT scan images.  In the proposed process, the 

desired model of the object bone joint is first reconstructed from the patient’s images using 

only low-level segmentation.  This model will be called the object model.  In this stage of the 

process, the areas where the bones of the object model are inadvertently connected (welded) 

are not of concern; we assume welding will occur to some degree.  Next, corresponding 

regions of the generic model are registered to those of the object model so that the generic 

model can be used as a reference model.  Then, the object model is analyzed by comparing it 

to the generic model; with a goal of identifying and repairing the welded regions on the 

object model.  Finally, the individual bones in the object model can be reconstructed as 

separate components of the joint. 

The remainder of this dissertation is organized as follows: In Chapter 2, relevant 

literature from previous research is discussed.  Chapter 3 presents an overview of the 

Figure 1.5. Steps of high-level segmentation: (a) CT image of hip joint, (b) 
contour after low-level segmentation, (c) high-level segmentation 
by manual modification, (d) contours after high-level segmentation

 

(a) 

Femur Pelvis 

 

(b) 

Error  
 

(d) 

Femur Pelvis 

(c) 

 

Modification  
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proposed solution approaches.  Chapter 4 presents methods for registering the generic model 

to the object model such that further analysis can be conducted.  In Chapter 5, methods for 

detecting and modifying the errors of the object model using reference information from the 

generic model are presented.  Lastly, conclusions and future research are discussed in 

Chapter 6. 
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CHAPTER 2. LITERATURE REVIEW 

 

Traditional low-level segmentation techniques such as thresholding, edge detection, 

and regions growing represent the early methods in medical imaging (Pal and Pal, 1993).  

Thresholding is the simplest technique that classifies the image pixels into two categories, 

object and background, based on their threshold values (Sahoo et al., 1988).  However, due to 

a similarity of surrounding tissue density such as cartilage and bones, adjacent bones may be 

combined as the result of segmentation.  Edge detection refers to a technique that locates 

points of abrupt changes in grey level intensity of images (Davis, 1975; Marr and Hildreth, 

1980). This technique often requires space closing methods to connect separated edges 

belonging to the same boundary.  It may be straightforward to automatically connect the 

edges with similar levels of intensity, but it is very difficult to provide information where the 

edges belong to different bone boundaries.  Region growing is a procedure that groups pixels 

into regions based on predefined criteria for growth (Zucker, 1976).  The technique begins 

with an initial seed (a small region) and then inspects the statistical properties of neighbor 

regions to merge if they have similar attributes.  Similar to edge detection techniques, 

preventing the regions from merging between different bones is complicated.  In general, 

traditional low-level techniques can be implemented automatically (Ramesh et al., 1995; Yen 

et al., 1995; Bennamoun et al., 1995), or with considerably less human intervention (Adams 

and Bischof, 1994). Unfortunately, these techniques are not sufficient to properly separate 

and identify individual bones in joint areas. 

Several researchers proposed additional techniques to improve traditional low-level 

segmentation in order to separate the adjacent bone structures.  Westin introduced an 
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adaptive filter for enhancing structures of interest in CT images (Westin et al., 1998).  The 

method sharpens areas around the adjacent bones.  The result showed that the filter is 

effective to separate bones in the hip joint (pelvis and femur).  However, the method works 

well only when the gap between adjacent bones is visible.  For bones that are very close or 

even touch each other, the method may not improve the result of segmentation.  Kang 

introduced a 3D segmentation method for segmenting bone structures from CT images (Kang 

et al., 2003).  The method combines region growing techniques with some additional 

methods for closing the discontinuous boundaries and adjusting oriented boundaries.  The 

results showed that the method works for segmentation of individual bones in hip joint and 

knee joints.  The drawback is that the adjacent bone structures must be isolated before 

segmentation process.  Yao presented estimated and corrected normal direction methods for 

detecting bone edges in CT images (Yao et al., 2005).  The algorithm involved edge tracing 

and estimated normal directions of bone edges.  The results showed an improvement in 

segmentation by decreasing the gap of contours and unrelated edges; however, the method is 

sensitive to noise and quality of bone edges in CT images.  Overall, the methods that attempt 

to improve traditional low-level segmentation may suffer from poor quality of bone 

boundaries especially where individual bones are adjacent.  The final result is still relies 

heavily on the result of traditional methods. 

Deformable contour and Deformable Model are the very popular segmentation 

methods of the past decade.  Prior knowledge or shape constraint of the object of interest is 

incorporated to overcome the weakness of traditional segmentation.  The basic idea of 

deformable methods is using a shape to represent the object of interest; then this shape is 

iteratively deformed with some restrictions until it fits the object in the images.  Snake (active 
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contour model) was the first well-known deformable contour (Kass et al., 1988).  The snake 

is an elastic contour that is located over an image and then its shape is deformed toward the 

desired contour using a combination of internal and external energies.  The snake method 

requires the initial contour to be close to the object of interest and has a limitation in 

changing topology.  Cootes proposed a similar approach called Active shape model (Cootes 

et al., 1994).  Instead of using energy constraints, the method used the statistical variation of 

the shape model as prior knowledge of deformation.  The method begins with a generic shape 

and deforms it based on methods found in the training set.  However, the accuracy of result 

depends on the alignment of the initial shape.  Josephson expanded Cootes’s work to 

segment images using 3D active shape model (Josephson et al., 2005).  The active shape 

model is built from several sets of data using the Iterated closest point (ICP) algorithm, and 

then utilized it as prior knowledge in order to segment other CT images.  The approach 

requires the proper initial location of the active shape model to obtain a good result of 

segmentation.  Deformable contour or deformable model methods provide an improvement 

over the traditional low-level segmentation in restricting the shape to the object of interest.  

However, the initial shape must be located close to the object in the images to yield a good 

result; a step requiring skilled user with knowledge of the anatomy.   

Some researchers proposed methods that could enhance deformable contour or 

deformable model methods.  Caselles proposed the method called Geodesic active contour to 

handle a problem in the topological changing of the snake approach (Caselles et al., 1997).  

The method allows the contour to change topology without detecting the deformation.  

Lorigo combined geodesic active contour with texture information to segment a knee joint 

from MRI images (Lorigo et al., 1998).  The method can separately detect the tibia and 
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femur; however, the initial contour must be placed inside the structure.  Other researchers 

focused on improving the initial input of deformable contour or deformable model methods.  

Pardo presented an automated snake-based approach for CT image segmentation (Pardo et 

al., 2001).  This work employs edge and region information from the segmentation results of 

a previous image slice.  Although this method seems to be able to separate the adjacent 

bones, a solution is not presented for images that have changes in the number of contours 

from a previous image slice.  Heo proposed segmentation of the tooth from CT images using 

the contour and threshold value passed from a previous image slice (Heo et al., 2004).  The 

segmentation of a tooth is analogous to bone segmentation because some teeth may also 

touch neighboring teeth.  The method uses B-spline snakes to segment images.  The method 

improves the segmentation of individual teeth; however, the method only works well when 

the object does not change between image slices.  Over all, the methods that improve the 

deformable contour or deformable model still require proper positioning of the initial shape; 

although they gain more flexibility.  The methods allow topological changing but they cannot 

recognize the individual bone structures.  This problem is classified as the correspondence 

problem in 3D reconstruction (Park and Kim, 1995; Bajaj et al., 1996; Ryu et al., 2004). 

More recently, methods for simultaneous segmentation of multiple objects were 

proposed.  Kainmueller proposed the method to repair the overlapping surfaces of two bone 

models using Shared Intensity Profiles (Kainmueller et al., 2008).  The shared profiles are 

used as middle borders that adjacent bone surfaces cannot come across. This method can 

prevent intersection of adjacent objects; however, the individual bones should be segmented 

before the method can be applied.  Klinder proposed a method to simultaneously segment 

spine bones using shape models (Klinder et al., 2008).  This proposed method deforms the 
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shape models to multiple bones in the image while the overlapping of shape models is 

prevented.  However, the result is sensitive to the initial position of the shape models.  

Manual correction is still required during the segmentation process.  Simultaneous 

segmentation of multiple objects could be an effective approach for bone joint segmentation 

and separation if the proper initiation of shape models is obtained. 

Other researchers proposed methods that may be used for specific types of joints or 

specific applications.  Zoroofi et al (2003) proposed the method for automated segmentation 

of hip joint from CT images.  The first step is to roughly estimate the joint space between the 

pelvis and femur; then, a technique named moving disk technique (Zoroofi et al., 2000) is 

used to refine the preliminary contour of the joint space.  Moving disk technique refers to a 

method that searches for the boundary of the bone by moving a circle close to the boundary 

and adjusting the circle to the boundary point.  Although the method was shown to be 

effective for segmentation and separation of hip joints, it required the center of the femoral 

head to be placed in its initial position; yet it was not addressed if this position was 

automatically obtained or manually chosen.  Liu presented rigid model-based 3D 

segmentation for bone joints (Liu et al., 2005).  The purpose of this work is to create a model 

for joint analysis.  The method focuses on using the model, created from the first set of CT 

images, to subsequently segment the same bone which has different position and orientation 

in all other sets of images.  The regional relative intensity pattern is used in matching 

process.  The result showed high success rates; however, the method was only applied to sets 

of CT images from the same person. The variation of the bone among each person may cause 

different results.  Shen presented a method to segment complex bone structures using high-

level prior knowledge (Shen et al., 2005).  This knowledge consists of mean shape and high-
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level features of bone structures.  The mean shape is created from several shapes obtained by 

manual segmentation.  The high-level features such as abrupt edges or ridges are recorded 

and used to prevent leakage in segmentation.  The drawback of this method is that the mean 

shape and high-level features must be developed for each type of joints.  Moreover, it can be 

complicated to obtain the proper alignment of mean shape and features to the image slices.   

Many methods have been proposed to improve segmentation and separation of bone 

joints in CT images.  Some approaches that attempted to improve low-level segmentation are 

still not sufficient to guarantee the proper result since there are many variations in CT 

images.  The approaches that employed the shape models still require proper initiation of the 

models.  Often, manual intervention is required in the post processing of the results.   This 

dissertation proposes a new method for the separation of bone joints by focusing on the idea 

of high-level segmentation.  The method employs a generic shape model as anatomical 

knowledge and utilizes this model to compare and fix the result model from low-level 

segmentation.  A key difference in this new method is that we allow or assume that low level 

segmentation will probably have errors.  Instead of fixing the errors a-priori, we move 

forward with at least an initial 3D model where it is easier to detect problems.  Then, we can 

fix the 3D model directly, fix the 2D slices directly, or provide feedback to the low level 

segmentation and then iterate until the problem areas are avoided altogether, automatically. 

The following chapter begins a discussion of the current approach by presenting a general 

problem framework and solution approach. 
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CHAPTER 3. PROBLEM FRAMEWORK AND SOLUTION APPROACHES 

 

 This chapter provides an overview of the research for this dissertation.  It begins by 

presenting details on the problem with reconstructing 3D models from medical images.  

Next, description of problem framework and solution approaches is presented.  It will be 

shown that the contribution of the proposed method can be divided into two important 

processes: 1) model registration and 2) welded removal.  These two processes will then be 

discussed in detail in proceeding chapters.  

 

3.1. Introduction 

 Reconstructed 3D models of bones are not only used in clinical applications, but also 

widely used in other non-medical applications such as computer graphics, simulation, and 

animation.  Usually, medical expertise is required in order to properly separate individual 

bones before 3D model is reconstructed.  It is often difficult and/or costly to have a medically 

trained person available, or when one is, they may not be skilled in 3D systems/geometry to 

effectively execute the task.  Moreover, the task to separate bone structures is very laborious 

and prone to errors.  Thus, the goal of this research is focused on reconstructing bone joints 

when it is assumed that a skilled person is not available.  The focus of this research is to 

provide an automated system for high-level segmentation, assuming that low-level 

segmentation has already been done to the CT images.  The method inputs a model that may 

or may not contain welded regions from low-level segmentation and outputs a modified 

model where the bones have had welded regions removed and all bones are distinct.  In the 

next section, problem framework of this research will be presented. 
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3.2. Problem Framework 

 Since this research proposes an automated system for high-level segmentation of 

bone joints, two major problems must be answered before building the system.  The first 

problem is how to substitute medical expertise with computer algorithms.  The second 

problem is how to implement the system in a completely automated fashion.  To answer the 

first problem, the method replaces anatomical knowledge using a generic model of what the 

bone joint should look like.  This model is a complete, error free, and disassembled bone 

joint represented as a 3D CAD model.  The basic idea is to use the generic model as a 

“known” good pattern and compare it with the reconstructed bone joint from CT images 

(patient’s model) which will be referred to as the object model.  Then, this object model is 

disassembled based on the information from the generic model such as number of bones, 

location, etc.  In order to provide better representation of the object model, there may be a 

need for several versions of the generic model; a library based on age, gender, ethnicity, etc.  

Since this issue is outside the scope of the current research, it is assumed that a proper 

generic model is obtained at the beginning stage.  The second problem is answered by using 

an automated process to repair the welded regions of object model that are created from the 

results of low-level segmentation.  Instead of manually segmenting the bone boundaries from 

CT images, the proposed method accepts an object model directly from low-level 

segmentation whether these methods were completely effective or not.  If the low-level 

segmentation is better, then the welded regions should be smaller; regardless, the method will 

detect the welded regions, and remove them.   

The framework of the proposed solution methodology is illustrated in Figure 3.1.  

Two automated processes are proposed to build the system in high-level segmentation: 1) a 
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process that registers the generic model to the object model, and 2) a process that repairs the 

welded regions by using reference data from the generic model.  These two processed will be 

the main focus of this research and they will be described in more details in the following 

two chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Overview of Solution Approaches 

The proposed solution begins preliminarily reconstructing the 3D model (Object 

model), using any form of low-level segmentation.  The generic model is selected from a 

database using several characteristics of object model to be the criteria (e.g. age, gender, 
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Figure 3.1. Framework to substitute anatomical knowledge in high-
level segmentation  
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height, and ethnicity).  It is assumed that the database selection process is a straightforward 

step and that the generic models in the set are given the same orientation as the bones in CT 

images (assuming some standard procedures are used to image the joints).  
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The overall process steps for automated system in high-level segmentation are 

illustrated in Figure 3.2.  In order to separate the object model which contains the welded 

regions, the method compares the object model to the generic model.  Several approaches to 

compare 3D models were previously proposed (Suzuki et al., 2001; Zhang and Chen, 2001).  

The common method in previous work was using a combination of 3D features including 

tensors, volumes, vertices, faces, etc.  However, since bone joints are complex structures, a 

large variety of 3D features are required for sufficiently representing the model; thus, huge 

computations are required.  The difficulty is also how to distinguish the welded regions from 

regular surfaces.  Instead of using 3D features, the proposed method in this research employs 

a slice model where the model is cut into a series of slices along a direction.  This approach is 

commonly used in methods such as rapid prototyping processes to simplify the geometric 

complexity of 3D models (Pham and Gault, 1998).  In a slice model, the surface of a model is 

replaced by a stack of 2D contours representing the cross sections of the object.  From the 

fact that the object model are reconstructed from image slices such as CT slices, if the object 

model is sliced equally or smaller than the thickness of the imaging process, the set of slices 

can provide a close approximation of the bone joint in CT images.  Thus, the proposed 

method cuts 3D polyhedral models of the object model and the generic model into a series of 

slices with 2D polygonal contours. 

The slice model simplifies the process of comparing between complex 3D surfaces of 

the two models.  For example the welded regions where the surfaces of two bones are 

combined in 3D space are transformed into the merging of two or more simple contours in 

2D space.  Figure 3.3a illustrates the slice model of a hip joint (object model).  The welded 

regions are located where the contours of the femur and pelvis are combined (Figure 3.3b). 



www.manaraa.com

18

 

 

 

 

 

 

 

 

In this research, two new processes are proposed in order to compare the object to 

generic model and repair the welded regions.  The first process called sliced model 

registration is a process to align the set of object slices with the set of generic slices (Figure 

3.2).  The purpose of this process is to find the generic slices that most closely represent the 

object slices.  These generic slices will used to identify and repair the welded regions on the 

object slices.  Two analyses are proposed for the sliced model registration process: 1) section 

analysis, and 2) contour analysis.  Section analysis provides a coarse registration by dividing 

the object and generic slice models into several small sections.  Then, each section of object 

slice model finds its corresponding section from the sections of the generic slice model.  

Contour analysis serves as a fine registration that compares the shape of contours on the 

object and generic slice within the corresponding sections.  Then, the best match of generic 

slice is identified for each object slice.  Sliced model registration outputs the object slices 

with their matching generic slices. 

There are two feedbacks that can be generated from the sliced model registration 

process: 1) match percentage, and 2) modified generic slices or a modified generic model.  

 

Figure 3.3. Slice of object model of hip joint 

 

Welded regions 

(a) Front view (b) Slice view 

Contour of pelvis 
Contour of femur 

CAD model of hip joint 
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Match percentage is the measurement of similarity between the object slice model and the 

generic slice model.  If there are several generic models that fall under chosen categories 

from the database, the match percentage can lead to a more optimal model from the database.  

Modified generic slices are the set of generic slices that corresponds to the object slice 

model.  A modified generic model is a reconstructed model using modified generic slices.  

The main advantage of these modified slices or model is that they can be automatically 

translated and scaled to fit the object from CT images.  Several techniques in low-level 

segmentation such as active shape contour, active shape model, and deformable model (Kass 

et al., 1988; Cootes et al., 1994; McInerney et al., 1996; Josephson et al., 2005) usually 

require manual alignment to position their initial contours or model before segmenting 

images.  By using modified generic slices or model as initial contours or model, these manual 

steps can be eliminated. 

 The second proposed method called weld removal is a process that attempts to 

remove the welded regions and separate the individual bones in object model (Figure 3.2).  

Weld removal utilizes the output from sliced model registration in two steps: 1) weld 

detection, and 2) weld modification.  The simple idea in weld detection is that if one contour 

of object slice is represented by two or more contours of the matching generic slice, this 

object slice contains welded regions.  When a weld is detected on an object slice, there are 

two possible approaches to repair the weld.  The first approach is sending the matching 

generic slice back through the low-level segmentation process as a guide to what the contour 

should have look like.  The second approach is to use the matching generic slice to separate 

and restore the shape of the object slice that contains the welded regions.  The new 

contribution of this work lies more in the second approach, where welds are fixed after they 
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are created.  In the weld modification step, the welded regions are removed and then repaired 

by some portions of generic slice.  This repaired slice is referred as hybrid slice since it is a 

combination of mostly the object slice and portions of the generic slice used to replace the 

welded region.   

 The weld removal process generates the weld percentage which can be used as a 

metric to determine the effectiveness of the low-level segmentation process and determine 

better parameters for their processing such as thresholding values, image filtering parameters 

or morphological parameters (Pitas 2000; Nikolaidis and Pitas, 2001).  The parameters can 

be adjusted iteratively until the welded regions are minimized.  The parameters could be 

globally or locally changed, for the entire model, or only for the specific slices that contains 

welded regions.  The output of weld removal process, hybrid slices or hybrid model, is 

similar to the output of sliced model registration process; modified object slices or a modified 

object model (Figure 3.2).  The output from the weld removal process can yield the same 

benefits as the output of sliced model registration in the improvement of low-level 

segmentation or it can also be used as a final approximated model if desired.   

This section has provided a general overview of the solution methods while some 

details of sliced model registration and weld removal will be presented in following sections. 

 

3.4. Sliced Model Registration 

 Sliced model registration process consists of two major analyses: 1) section analysis 

and 2) contour analysis.  This process will identify the closest match of generic slices for 

each slice of the object model. 

3.4.1. Section analysis 
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Section analysis will find some particular slices that have similar characteristics on 

both the object and generic model, but have unique characteristics compared to surrounding 

slices on the model itself.  These slices will be utilized as section dividers called landmarks 

in the proposed method.  A simple example of a landmark may be described by using the 

analogy of two human faces that need to be registered.  In this case the nose can be detected 

as an outstanding landmark that can serve as a relative location to align two faces.  Other 

landmarks may include the eyes, mouth, etc.   Several attributes including area, perimeter, 

and distance from centroid to a reference point are currently used for automatic landmark 

detection.  These attributes are referred as slice descriptors in the proposed method.  It 

should be noted that these slice descriptors are computed from the convex hull (Preparata and 

Shamos, 1985) of the slices because the individual contours on the object slice and matching 

generic slice may look different due to the welded regions (Figure 3.4).  The shapes of the 

respective convex hulls for both slices should be unaffected by the welded regions. 

 

 

 

 

 

 

 

In the proposed method, the landmarks are detected using several criteria including 

local minimum or maximum of slice descriptors and rate of changes of slice descriptors.  

Only corresponding landmarks on the object slice model and generic slice model are used for 

 
 

(a) (b) 

Figure 3.4. Convex hull of (a) object slice and (b) generic slice 
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dividing these two sets of slices into small sections.  The challenge is how to identify if a 

selected landmark from the object slice model corresponds to any landmarks from the 

generic slice model.  This dissertation proposes a method to identify landmarks in several 

levels based on the magnitude of their values.  It is expected to find similar landmarks at an 

equivalent level.  The method locates landmarks by searching through all slice descriptors 

and finally both slice models are divided into corresponding sections.  Figure 3.5 shows 

example locations of landmarks on both models. 

 

 

 

 

 

 

 

 

3.4.2. Contour analysis 

 Contour analysis is a process that analyzes the similarity between the slices of object 

and generic models, and then identifies the best matching pairs.  The slices of object model 

are only compared to the slices of generic model within their corresponding sections.  Of 

course, the proposed method requires 2D shape matching techniques for this analysis.  

Although shape matching techniques were previously proposed in the literature (Loncaric, 

1998; Jiantao et al., 2004; Zhang and Lu, 2004), most of them are only suitable for 

Figure 3.5. Locations of landmarks on (a) object model and (b) generic model 
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comparing between single contours or equivalent numbers of contours on the slice.  Contours 

of a bone joint may or may not have equivalent numbers between object and generic slices.   

 The method in this dissertation is modified from the method of Attalla (Attalla and 

Siy, 2005).  Attalla used three centroid attributes to describe a complex shape of contour: 1) 

distance from centroid to boundary point, 2) angle between the line extended from the 

centroid and the line connecting boundary points, and 3) ration of the line connecting 

boundary points to the arc of the contour.  However, Attalla’s method was proposed for 

comparing single contours.   

In this dissertation Attalla’s method is modified in order to properly compare the 

contours on two bone slices which may be more than one contour and may also contain 

different number of contours.  Also, the proposed method utilizes the centroid of the convex 

hull instead of the centroid of individual contour.  The boundary points are obtained by 

uniformly incrementing an angle of line extended from the centroid to the furthest contour 

boundary.  This method for obtaining boundary points is similar to the method proposed by 

Tan (Tan et al., 2003).  In this dissertation, three centroid attributes are used to match the 

contours (Figure 3.6): 1) distance (ri) from the centroid of convex hull to boundary points, 2) 

the angle between the center line and the line connecting between two boundary points (ai), 

and 3) the length of the line connecting boundary points (vi).  The similarity between the 

contours on object slices and the contours on generic slices is measured by computing the 

sum of squared differences (SSD) of those three proposed attributes.  The lowest SSD is 

where the generic slice matches the object slice. 
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After the matching pairs between object slices and generic slices are found, the results 

will be further used in weld removal process.   

 

3.5. Weld Removal 

 This process utilizes information from generic slices to identify and repair the welds 

on object slices.  The proposed method involves two process steps to remove the welded 

regions: 1) weld detection and 2) weld modification. 

3.5.1. Weld detection 

Weld detection is a process that locates welded regions by comparing object slices to 

generic slices.  Since contours on generic slice represent a good pattern of contours on object 

slice, if one contour of object slice matches with two or more contours of generic slice which 

belongs to different types of bone, this contour of object slice contains welded regions.  At 

the beginning of weld detection, the generic slice is transformed to fit the object slice using 
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centroid of convex hull as a reference point.  The intersection of contour is used to identify 

the welded regions (Figure 3.7a).  If the contour of object slice does not intersect with any 

contours of generic slice, this contour of object slice is further identified by intersecting with 

a contour on the previous or next object slices that can be identified (Figure 3.7b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the object slice that contains welded regions, the proposed method further 

examines the location of welds on the contour and uses this location to divide the contour 

into portions that belong to individual bones.  The method first locates contours of generic 

slice on the top of relative contours of object slice.  The closest generic contour is used to 

identify the part of object contour that relates to individual bone.  Then, the object contour is 

taken apart into several portions corresponding to the pattern of generic contours (Figure 

(a) (b)  

Figure 3.7. Intersection method for weld detection: (a) intersection between 
object contour and generic contours, (b) intersection between 
contours on current slice and next slice of object model when generic 
contours do not intersect 
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3.8).  Next, the results from weld detection are passed to the weld modification to restore the 

incomplete contours of object slice. 

 

 

 

 

 

 

 

 

 

 

3.5.2. Weld modification 

Weld modification refers to a process that repairs the welded regions on the object 

slice.  From the weld detection process, the contour of the object slice that contains welded 

regions is divided into several portions corresponding to individual bones.  The challenge is 

how to recreate the complete contours from these portions.  A common method that utilizes 

curvature at the end points can be used to close the contour; however, it may not yield proper 

results when the shape of the contour is complex or the amount of data to restore is very 

large.  Therefore, the proposed method employs parts of the generic contour to fill this 

missing data.  Figure 3.9b shows how the portion of generic contour is created in order to fill 

the missing part of object contour where a weld was removed.  Then, this portion of generic 

contour is transformed to fit the gap on object contour as shown in Figure 3.9c. The fixed 
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contour called hybrid contour is finally created by combining parts of the object contour and 

generic contour.  

 

 

 

 

 

 

After the object contours are repaired, the set of hybrid slices are now ready for 

reconstructing a 3D model (hybrid model).  These hybrid slices or entire hybrid models have 

their contours or models properly separated into a distinct set of bones (e.g. pelvis and femur 

for a hip joint).  Either hybrid slices or hybrid models could be further utilized in low-level 

segmentation for image segmentation purpose.   

 

3.6. Summary 

In this chapter, an overview of an automated system for high level segmentation and 

separation of complex bone structures is proposed.  This chapter briefly presents two major 

processes which are important to build the automated system for high-level segmentation. 

The first process, sliced model registration, registers the object model with the generic 

model.  Then, the welded regions on object model are detected and repaired in the continuous 

process, weld removal.  Chapter 4 and 5 will present both the sliced model registration and 

weld removal processes in more detail.   
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CHAPTER 4. AUTOMATED SEPARATION OF BONE JOINT STRUCTURES FOR 
MEDICAL IMAGE RECONSTRUCTION – PART I: A METHODOLOGY FOR 

REGISTRATION 
 

Wutthigrai Boonsuk and Matthew C. Frank 

 

4.1. Abstract 

Automated segmentation and separation of bone joints is challenging since bones in 

joint areas are inhomogeneous structures surrounded by soft tissue such as cartilage, which 

makes bone boundaries unclear in the image slices.  Reconstructed 3D joint models will 

often have bones improperly combined after traditional low-level segmentation methods such 

as thresholding, edge detection, and region growing techniques.  These models require an 

extensive amount of expert intervention to manually identify and remove inadvertently 

combined areas, which appear as welds between bones.  This manual task is time consuming, 

laborious, and inconsistent.  This paper presents a methodology for automatically separating 

bone joint structures by utilizing known anatomical information from a generic CAD model.  

This generic CAD model is a properly generated model of the anatomy of a similar human 

subject, with regard to age, gender, height, etc.  The intent is to aid in the separation of bones 

in the joint by comparing the inadvertently combined models to generic models that have 

individual bones separated properly.  The method uses simplified representations (slices) of 

the CAD model; hence the two or more combined 3D surfaces are transformed to two or 

more merged 2D contours on a slice.  Sliced model registration and weld removal are 

proposed as sequential processes for fixing welds on the slices.  To begin, the sliced model 

registration process compares the two models and identifies corresponding pairs of slices.  
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Next, the weld removal process detects and removes welds on the slices using available 

information from its matched slice on the generic model.  The repaired slices are then used to 

reconstruct 3D models with all bones in the joint properly separated.   

The main contribution of this paper is a method for the sliced model registration 

process.  In this process, two sets of model slices are first divided and registered in several 

bulk sections.  The slices are then matched between corresponding sections of the two 

models, the object model under study and the generic model.  The method presented is 

shown to be an improvement over general rigid registration and can be either used in a weld 

removal process or used for feedback to low-level segmentation in order to improve 

segmentation results and avoid welding.  The human hip joint is used as an example of 

algorithm implementation in this paper.  The proposed solution is a general approach that 

should be flexible enough to work with other types of joints such as the knee, elbow, etc. 

 

4.2. Introduction 

With current medical imaging technology such as computed tomography (CT) or 

magnetic resonance imaging (MRI), 3D CAD models can be created using the series of cross 

sectional images.  These CAD models are used in both medical and non-medical applications 

ranging from clinical diagnoses, surgical planning, medical implant fabrication, or computer 

simulation and animation [16, 25].  Two essential processes to transform medical images into 

CAD models are image segmentation and model reconstruction processes.  The segmentation 

process distinguishes the objects of interest (specific tissues like bone, cartilage, etc.) from 

the image background.  Model reconstruction then uses the results from segmentation to 

create 3D models.  Segmentation can be classified into two levels: low-level segmentation 
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and high-level segmentation [5].  Low-level segmentation refers to a process that detects and 

retrieves important features from the image and translates them into explicit data.  This level 

of segmentation is commonly the first step in the segmentation process.   As one example of 

low level segmentation, one can select threshold density values (like a band-pass filter) to 

separate bones from the image background.  However, it is well known that low-level 

segmentation is not sufficient to segment bone joint structures.  The boundaries of adjacent 

bones appear to merge after the models are reconstructed using the results from low-level 

segmentation.  In other words, the low level segmentation can distinguish bone material from 

the background, but has difficulty in distinguishing one bone from another, especially when 

they have intimate contact, such as a joint.  The primary reason is because the joint areas 

contain soft tissues such as cartilage which can make bone boundaries ambiguous (density is 

very similar at the interfaces); thus, low-level segmentation and model reconstruction may 

not distinguish the interface between two distinct bones.  The other reason is that low-level 

segmentation cannot provide branching or topological information [12, 23] for properly 

reconstructing individual bones.  In other words, even if the boundaries can be found, it is a 

further problem to determine which slice belongs to which bone.  When these problems arise, 

the bones can be inadvertently joined or as we will refer to in this paper welded together.  

The research in this paper is highly motivated by solving this welding problem and to do so 

in an automated fashion.  An example of a welded bone joint is given in Figure 4.1a, while 

the properly separated bones of the Femur and Pelvis are shown in Figure 4.1b. 
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High-level segmentation is specifically targeted at fixing the weld problem.  

However, this level of segmentation is usually performed by an operator who is trained or 

familiar with anatomical structures.  The person will examine the image slices and manually 

repair the result of low-level segmentation where the bones are combined.  Figure 4.2 

illustrates steps of high-level segmentation using a CT image of hip joint where the femur 

and pelvis are physically adjacent.  After the low-level segmentation process, the femur 

contour and pelvis contour were combined at the welded regions as shown in Figure 4.2b.  In 

this case, high-level segmentation would be manually performed to repair the welded 

regions, and assign the contours to each individual bone (Figure 4.2c and 4.2d).  The manual 

approach is a time consuming and tedious task because the modification might need to be 

repeated for tens or hundreds of image slices.  The results are also prone to errors and are 

generally non-repeatable.  

 

 

 

Figure 4.1. Low-level segmentation and high-level segmentation: (a) hip joint after 
low-level segmentation and (b) hip joint after high-level segmentation 
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The research in this paper specifically focuses on high-level segmentation of bone 

joint structures with the goal of developing an automated system to perform the task.  The 

challenge is how to provide the system with the required knowledge of anatomy and how to 

utilize this knowledge in the system.  Figure 4.3 illustrates an overview of the approach of 

the proposed system.  The proposed method employs a generic CAD model that represents 

the known information, properly separated bone joint model.  With respect to automation of 

the method, using a generic model provides a flexible solution for separation of a variety of 

joint types.  The generic model is then registered to the patient’s model that has been 

preliminarily reconstructed from the results of low-level segmentation.  The method inputs 

the patient’s model, which may or may not contain welded regions, and outputs a fixed model 

where the welded regions are removed and all bones are distinctly separated. 

 

 

 

Figure 4.2. Steps of high-level segmentation: (a) CT image of hip joint, (b) 
contour after low-level segmentation, (c) high-level segmentation 
by manual modification, (d) contours after high-level segmentation 
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This paper presents a method for registering the patient’s model to a generic model.  

The registration process is critically important since the accuracy of weld detection and 

modification depends on how well the shape and topology of the generic model aligns to 

represent the patient’s model.  This paper is organized as follows:  Previous work in 

segmentation techniques are reviewed in the first section followed by an overview of the 

solution method.  Next, the methodology of the registration process and an implementation 

are described in Section 4.5 and 4.6.  Results comparing the new method to a rigid 
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Figure 4.3. General approach for substituting anatomical knowledge in the 
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registration process that lacks analysis are shown in section 4.7, along with conclusions and 

proposed future work in section 4.8. 

 

4.3. Related Work 

Although several segmentation methods have been proposed for medical image 

processing, automated segmentation is an elusive solution, especially with bones in joint 

areas.  Traditional techniques for image segmentation such as thresholding, edge detection, 

region growing, and morphology operation [18, 20] mainly rely on grey scale analysis of the 

image.  These techniques can give mistaken results in regions where the grey scale is very 

similar between two or more adjacent objects such as bones in joint areas.  CAD models of 

bones in these areas are often combined because one cannot distinguish the boundary of 

individual bones.  In these cases, manual editing by medical experts is required to correct the 

boundaries of bones before the reconstruction process.   

Knowledge-based techniques provided an improvement over traditional techniques, 

with example solutions such as snake (2D), deformable contour (2D), active shape contour 

(2D), deformable model (3D), and active shape model (3D) [14, 9, 15, 13].  These methods 

add some prior knowledge or shape constraints in order to segment the images such that the 

contour (2D) or model (3D) can be deformed with restriction to fit the boundary of the object 

of interest.  However, the quality of segmentation is sensitive to the alignment of the initial 

contour or model.  For example, the initial contour must be carefully placed at the boundary 

of bones since the clearance between the bones is often quite small and very difficult to see.  

If the contour is placed incorrectly, the segmentation results could be a combination of the 

adjacent bone boundary.  Although some researchers [11, 17] recommended using the 
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contour in the previous image slice as the initial contour (2D), this does not address the 

problem where the number of contours differs between image slices. 

The proposed method in this paper is intended to replace the manual alignment step 

and handle the problem of changes in the number of contours across slices.  Alternatively, 

the proposed method could be used to augment existing techniques found in the literature by 

automatically generating the initial contour or model and aligning this contour or model to 

the object of interest in image slices.  In this manner, one could aid in automating the contour 

selection process and perhaps avoid weld generation.  In general, a major contribution of the 

research in this paper is a system that performs high-level segmentation without human 

intervention or skill required.  The system will replace knowledge by an expert with an 

example of what the joint should look like.   As a specific problem addressed in the work of 

this paper, we propose that welded bones due to poor segmentation methods can be detected 

and ultimately fixed if a proper example can be given.  

 

4.4. Overview of Methodology 

In the proposed method, generic models are employed as the “known” information 

about what the bone joint should look like.  The generic model is a complete CAD model of 

bone structure that contains all bones in the joint area with the bones properly and distinctly 

separated.  The generic model is given the same orientation and scale as the patient’s model 

from CT images.  A library of generic model may be necessary in order to provide a close 

approximated model by sorting on several criteria such as gender, age, height, and ethnicity.  

The makeup and structure of this library of models is outside the scope of this paper; it will 

be assumed that a relatively closely matched model is available as the input data.  
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The proposed method starts with a CAD model of the patient’s joint that has been 

preliminarily reconstructed from CT images.  In this paper, we refer to this model as the 

object model.   The method first allows object model to contain combined areas or welded 

regions (between adjacent bones) which may occur during segmentation and reconstruction 

process.  Later, the method identifies and removes the welded regions on the object model 

using known information from generic model.  However, identifying welded regions by 

comparing the object model (3D) to the generic model (3D) becomes very complicated.  

Features of 3D objects such as vertices, volumes, tensors, and surfaces are commonly 

employed to represent models [3, 26]; however since bone joints are complex structures, a 

large variety and combination of 3D features are needed for representing the model in order 

to provide adequate information to distinguish between the object model and the generic 

model.  Hence, computations are expensive for this approach.  It should be noted that the 

parts of the object model will always differ at least slightly from the generic model since 

each human anatomy is unique. 

Instead of comparing between 3D models, this paper employs a method that cuts 3D 

model into a series of slices along a direction.  This approach is commonly used in methods 

such as rapid prototyping processes to simplify the geometric complexity of 3D model [19].  

In the slicing approach, a CAD model is represented by a stack of 2D contours which are the 

cross sections of the model (Figure 4a).  From the fact that the object model is created from 

image slices, if the object CAD model is sliced with equal or thinner slices, then one can 

expect a close approximation to the object.  Each slice contains 2D polygonal contours (cross 

sections) of one or more bones.  The welded regions between two model surfaces (two 

bones) are now represented by the merging of simple polygons (Figure 4.4b). 
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A schematic of the overall process is illustrated in Figure 4.5.  Two necessary 

processes are proposed for comparing and fixing the slices of the object model: 1) sliced 

model registration, and 2) weld removal.  In the sliced model registration process, slices of 

the object and generic models are analyzed in order to find slices of the generic model that 

best represent slices of the corresponding object model.  Two separate steps of section 

analysis and contour analysis are proposed for the registration process.  Section analysis 

divides sets of slices of object and generic models into several small sections.  Ideally, the 

sections on the object model should correspond to the sections on the generic model.  Once 

the corresponding sections are identified, contour analysis examines the slice contours in 

corresponding sections, and finds a closest pairs of slices.  The output of the sliced model 

registration process is the initial closest pairs of slices between object model and generic 

model.  This provides a metric of “match percentage” and a set of modified generic slices 

(2D) or a modified generic model (3D).  Match percentage is a measurement of similarity 

between the object model and generic model.  This feedback can be iteratively sent back to a 

generic model database to search for the closest generic model, if a library of generic models 

were available.  The modified generic 2D slices or modified generic 3D model are the 

 

Figure 4.4. Slice of object model of hip joint 
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registered slices or reconstructed model which correspond to the object model.  This 

feedback provides initial contours or an entire initial model for several existing techniques in 

low-level segmentation found in the literature including active shape contours, active shape 

models, and deformable models or for use in manual segmentation.   
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Next, the weld removal process identifies and repairs the inadvertently joined or welded 

regions on the object model.  The first step in the weld removal process is weld detection.  

This step utilizes the matched slices from the generic model to identify the welded regions on 

slices of the object model.  If there are welds on the slice, this object slice will be passed to a 

weld modification step. Weld modification uses the contours of generic slices to repair the 

welds on the contours of object slices.  The weld removal process can return the weld 

percentage along with some adjusted parameters to improve the results of low-level 

segmentation process.  The adjusted parameters can be any given parameters that are used by 

low-level segmentation process such as thresholding values, filtering parameters, and 

morphological parameters.  This feedback loop can be iterated until the welded regions on 

the object model are minimized.  The output of weld removal process is the slices of object 

model that have welded regions removed and with contours on the slices assigned to 

individual bones (contours of the femur are correctly assigned to the femur, etc.).  This 

output could be directly used in a reconstruction process to create an approximate 3D model 

which has all bones in joint separated.  However, this process can also be iterated by sending 

back the modified 2D object slices or the modified 3D object model to a low-level 

segmentation process.  A low-level segmentation process could use these modified slices or 

3D model to directly segment the object from medical imaging, with no human intervention 

or skilled manual processing such as alignment of deformable models or selecting seed 

points.  The following sections provide a detailed presentation of the sliced model 

registration process. 
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4.5. Sliced Model Registration Methodology 

 Sliced model registration refers to the process that finds the corresponding matches 

between object slices and generic slices.  Two major analyses are proposed for the sliced 

model registration process: 1) section analysis, and 2) contour analysis.  Section analysis 

divides slices of the object model and generic model into several sections.  Then, the method 

identifies sections of the object model that correspond to sections of the generic model.  

Contour analysis continuously compares the slices of the object and generic models in 

corresponding sections, and identifies the comparable slices between these two sections.   

4.5.1. Section analysis 

 Registration between slices of the object model and generic models is not simple 

because these models are not identical; as no two human anatomies are identical.    Section 

analysis is a process that breaks up the slices of object model and the slices of generic model 

into smaller sections so that they can be generally registered for some bulk sections of slices.  

This analysis aims to reduce the potential of inadvertently registering slice across the two 

models from obviously wrong areas.  The correct pair may not be located on the same 

numbered slice from both models, so a one-to-one match may not be appropriate.  However, 

if we allow the system to simply find the “best” match in a one-to-many comparison, the best 

match may exist in very different sections of the bone.  For example, the long bones (femur, 

tibia, etc.) may have numerous slices that are similar along the shaft and the best match may 

be far apart.  Hence, the section analysis serves as a coarse registration (section-to-section 

registration) which will limit the fine registration (one-to-one registration) to only 

corresponding sections of both models. 
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 In this paper, the locations used for dividing the model into small sections are called 

landmarks.  The landmarks must be determined mathematically in order for the process to be 

completely automated.    Moreover, landmarks on the object model must correspond to 

landmarks on the generic model.  Simple 2D geometric attributes such as area and perimeter 

can be mathematically computed from a stack of contour slices.  Tracing these 2D attributes 

can illustrate the transition in shapes of contours on the slices.  However, since the contours 

of the object model can contain welded regions while the contours of the generic model do 

not, the process could return false results.   To avoid this problem, the method extracts the 

landmarks from the convex hull of the contour slices instead, since the convex hulls cannot 

be affected by welded regions.    

Several algorithms can be adopted for computing the convex hull including the Gift 

Wrapping [7], Graham Scan [10], Divide-and-Conquer [21], Monotone Chain [1], and Quick 

Hull [22] algorithms.  The proposed method calculates one convex hull for all contours on 

the slice, which eliminates the effect of welded regions (Figure 4.6). 

 

 

 

 

 

 

The geometric attributes in this paper which are computed from the convex hull of 

contours on the slices are called slice descriptors.  A good slice descriptor will have the 

ability to extract proper landmarks and is generally robust with respect to types of joints and 

(a) (b) 

Figure 4.6. Convex hull of (a) object slice and (b) generic slice 

Convex hull 

Welded region  
 



www.manaraa.com

42

their orientation.  Three descriptors are proposed in this paper: 1) area, 2) perimeter, and 3) 

distance between the centroid of the convex hull to a reference point.  This reference point is 

the center of an enclosing cylinder for the entire model (Figure 7).  Based on the geometry of 

bone joint structures, these three slice descriptors vary mostly along the slice direction and 

will be shown to be simple and robust.  The slice descriptors are computed from a convex 

hull that has N vertices ordered counter clockwise.  A vertex of the convex hull is represented 

by (xi,yi) where i is from 0 to N-1.  

The area of a convex hull or area descriptor (A) is computed using a method that 

calculates the area of a convex polygon [6]. 
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The perimeter of a convex hull or perimeter descriptor (P) is computed by the 

summation of the distances between two vertices of the polygon.   
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The centroid of a convex hull (cxj,cyj) [6] is given by: 

∑
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Lastly, the distance between the centroid of the convex hull (cxj,cyj) to a reference 

point or centroid descriptor (C) is a simple Euclidean distance.  From Figure 4.7, if the 

reference point (rx,ry) is the center of the enclosing cylinder (aligned with the slice 

direction), the distance between the centroid to this point for each slice is computed by:  

22 )()( rycyrxcxC jjj −+−= ,    j = 0, 1, …, m   (slices)   (4) 

Once slice descriptors (Aj, Pj, Cj) are computed for the sets of slices of object model 

and generic model, the proposed method then extracts landmarks using these slice 

descriptors.  Landmarks are locations where the values of slice descriptor, along the slice 

direction, differ from neighboring values.  To reveal these landmarks, two methods are 

employed in this paper: 1) from maximum and minimum of descriptors and 2) from rate of 

change of descriptors.  

Detecting maximum/minimum of descriptors can be illustrated using a plot between 

values of the slice descriptor and slice number.  As the example shown in Figure 4.7, this 

figure presents a plot of the centroid descriptor by its slice number.  The global 

maximum/minimum and local maximum/minimum along the plot are the obvious points for 

probable landmarks.  Global maximum/minimum is the overall maximum or minimum points 

of the plot.  Local maximum/minimum is the maximum or minimum points on the plot by 

comparing to values of neighboring points.  It should be noted that before searching for any 
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landmarks from slice descriptors, the values of slice descriptors are first normalized by their 

maximum value to make them scale invariant. 

 

 

 

 

 

 

 

 

 

In theory, if a plot of slice descriptors is represented by f(x), those maximum and 

minimum points can be found using the first derivative and second derivative.  However, in 

practice it is too difficult to fit a curve through those slice descriptors; thus, this paper uses an 

iterative method by comparing the slope between two points of descriptor with an 

incremental small value (δ).    

For ( i = 0 to N-1) { 
  If (find max) { 
   If (sdi+1 > sdi) tempmax = sni+1 ; 
   Else { 
    If (Δsdi+1 > δ) 
    max = tempmax ;  
    tempmin = tempmax ; 
   } 

} 
If (find min) { 

   If (sdi+1 < sdi) tempmin = sni+1 ; 
   Else { 
    If (Δsdi+1 < δ) 
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    min = tempmin ;  
    tempmax = tempmin ; 

} 
} 

 } δ++ ;  
 where  N  =  number of slice descriptors, 
  sd = slice descriptor, 
  Δsd  =  the slope of two consecutive slice descriptors, 
  sn = slice number 
  

At the beginning of the detection process, all the maximum (and minimum) points are 

detected where δ is very small.  While the value of δ increases, the number of maximum 

(minimum) points that can be detected decreases.  The method traces the change in the 

number of these points until it approaches zero.  The hierarchy is established by the 

decreasing step in number of detecting points.  For instance, at the point before the number of 

detecting points becomes zero this point can be identified as a global maximum (minimum) 

point since it is detected by using the largest δ.  This point is called a first-level landmark.  In 

general, this is the location where the bone has the largest or smallest area, perimeter, or 

distance from centroid to the reference point.  A second-level landmark is the point before the 

number of maximum (minimum) points is changed to the first-level.  It is expected to find 

similar landmarks between the object model and the generic model at the equivalent level of 

landmark.  However, the first-level has the highest confidence in landmark matching while 

the lower-level (higher number) has less confidence.  

 The second method to detect landmarks from slice descriptors is using the rate of 

change of slice descriptors.  In this method, the landmarks are detected where the rate of 

change of slice descriptors is large.  Since the slope of the descriptors can be both positive 

and negative, the lower and upper bounds are set such that the landmarks are defined where 

the slopes fall outside the bounds.  Let γ be the bounds in this case. If sd is the slice 
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descriptor from slice 0 to N, Δsd is the slope between slice i and i+1.  The condition for the 

landmark is given by: 

   |Δsd| ≥  γ      (5) 

This method is analogous to setting the upper and lower control limits in statistical 

quality control [4].  The mean (μ) and standard deviation (σ) are computed from the slice 

descriptors and the lower and upper bounds are set by: 

  γ = μ ± 3σ      (6) 

Figure 4.9 illustrates the landmarks that are detected from the rate of change of 

centroid descriptors and the location of landmarks on the hip joint model. 

 

 

 

 

 

 
 
 
 
 
 
 

 

The method to locate the corresponding landmarks between sets of slices of object 

model and generic model were presented in this section.  These landmarks divide object and 

generic models into small sections and corresponding sections are established by related 

landmarks on the two models.  For instance, if a section of the generic model is located 
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between two landmarks for the area descriptor, the equivalent landmarks on the object model 

will identify the corresponding section of the object model.  An implementation of using this 

section analysis on the human hip joints is presented later in Section 4.6.  In the following 

section, the methods for contour analysis are presented. 

4.5.2. Contour analysis 

 After the set of slices of object and generic models are divided into several sections 

by the landmarks, the next task is to determine matches between the contour slices in 

corresponding sections.  The challenge of this matching problem is that the contours on the 

object slice may contain welded regions which cause its shape and total number to differ 

from contours of the generic slice (Figure 4.10).  However, the method to match the contour 

slices should be effective even though the welded regions do or do not exist. 

      

 

 

 

 

 

 

Many previous methods for matching 2D shape [27, 28] are not applicable for the 

matching problem in this paper since these methods mostly focus on comparing shapes with 

either a single or equivalent number of contours.  The matching method in this paper 

employs a modification of Attala’s method [2].  Generally, the method to match 2D shape 

Figure 4.10. Contours between the possible matches  

 

(a) Object slice (one contour, due to welding) (b) Generic slice (two contours) 
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evaluates some features from a shape contour, called shape descriptors.  Then, descriptors of 

one shape are compared to descriptors of another shape.   

Chang [8] introduced a matching method using Euclidean distance from a center 

reference point, which is a centroid of the shape, to boundary points as a shape descriptor.  

Attala adopted a similar method with three shape descriptors: 1) distance from centroid to 

boundary point, 2) angle between a center line and a line that connects boundary points, and 

3) ratio of a line that connects boundary points to the arc of the contour.  Attala’s method is 

intended to compare two single contours.  Thus, in this paper Attala’s method is modified to 

be suitable for comparing betweens two shapes with multiple contours.  The number of 

contours on these two shapes can be different. 
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The matching method in this paper employs the centroid of the convex hull of the 

slice instead of the centroid of the shape contour.  Three shape descriptors are investigated in 

order to compare contours of the object model to contours of the generic model: 1) distance 

from the centroid of convex hull to boundary points (ri), 2) angle between center line and the 

line that connects boundary points (ai), and 3) length of the line that connects boundary 

points (vi).  These shape descriptors are illustrated in Figure 11.  

Attala’s method obtains boundary points by dividing a contour with an equal space; 

however, the method is not applicable for multiple contours.  The proposed method in this 

paper computes boundary points by uniformly incrementing an angle of a line extended from 

the centroid of convex hull to the furthest contour boundary (Figure 4.11).  This method is 

similar to the method proposed by Tan [27].  Let θ be the uniform angle measured in degrees.  

Then, the number of circular angles (h) is equal to (360/θ).  The boundary points are denoted 

by (xi,yi) where i is from 0 to h-1.  It should be noted that smaller θ results in finer describing 

detail of contour; however, as θ gets smaller, it becomes computationally expensive.  From 

Figure 4.12, the shape descriptors (ri, ai, and vi) are given by: 
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Figure 4.12. Shape descriptors: ri, ai, and vi
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 Before comparing shape descriptors of the object to generic model contours, the 

shape descriptors are normalized with respect to their maximum values (to provide a scale-

invariant property). 

 Measurement of similarity in this paper is a way to determine how each shape 

descriptor of the object model contours differs from the shape descriptor of generic model 

contours.  The sum of squared difference (SSD) is employed.  A lower SSD value indicates 

more similarity; therefore, if a contour is compared to itself, SSD is equal to 0.  Let p be the 

slice number of the object model (for slices 0 to n), and q is the slice number of the generic 

model (for slices 0 to m).  Let h be the total number of circular angles and i is a number from 

0 to h-1.  Each shape descriptor (ri, ai, vi) is normalized by its maximum values.  The 

normalized shape descriptors of the object model are denoted by (Nrp,i, Nap,i, Nvp,i) while the 

normalized shape descriptors of the generic model are denoted by (Nrq,i, Naq,i, Nvq,i).  The 

sum of squared difference for each boundary point (SSDp,q,i) is computed by: 

SSDp,q,i   =   { }2
,,

2
,,

2
,, )()()( iqipiqipiqip NvNvNaNaNrNr −+−+−   

p = 0, 1, …, m (slices),   q = 0, 1, …, n (slices)    (10) 

The sum of squared difference between the contours on slices of the object model and 

the contours on slices of the generic model (SSDp,q) is given by: 
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 In this paper, finding a match for each slice not only computes SSD between 

compared slices but also considers SSD of the neighboring slices.  In other words, the 

proposed method finds the SSD between small sections of slices such that not only the shape 

of contours on the current slice is considered, but also the shape of contours on neighboring 

slices (Figure 4.13).  

 
 
 
 
 
 
 
 
 
 
 

 

 

Let β be the number of neighboring slices that is considered in this comparison. An 

average SSD for the current compared section is denoted by Avg(SSDp,q).  A match for slice p 

of object model is defined where Avg(SSDp,q) is minimized. 
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Figure 4.13. Comparing portion of slices (β = 3) 

(b) Generic model 

        Current slices being compared 
        Neighboring slices 

(a) Object model 
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 This section presented an algorithm for contour analysis and the following section 

will provide an implementation of both section analysis and contour analysis. 

 

4.6. Implementation 

 The algorithms for section analysis and contour analysis were implemented in C++ 

and graphically displayed using OpenGL.  To illustrate the implementation of these analyses, 

two human hip joint models created from CT scans are used.  The generic model was 

manually segmented and reconstructed using reverse engineering software (Mimics).  The 

generic model in this paper is only created for illustrating the implementation of algorithms.   

In practice, the generic model could be created from a mean shape of several hip models, a 

method suggested by Shen [24].  In addition, the generic model could be selected from a 

library under the same criteria as the object model (e.g. gender, age, height, and etc.).  The 

object model was created directly after conversion from CT scan images.  The set of images 

had 200 slices of 512x512 voxels and its spacing was 2.00mm.  Both object model and 

generic model were sliced with 0.01” (0.254 mm) spacing.  Slice descriptors and shape 

descriptors were computed for sets of slices of the object and generic model.  The 

implementation of section analysis and contour analysis for human hip joint is presented as 

follows: First, the results of detecting landmarks from slice descriptors are presented.  Then, 

the landmarks are redefined using shape descriptors from contour analysis.  In the last step, 

the method to find the match of each object model slice to generic model slice is presented.  

4.6.1. Landmark extraction 

 A simplified way to illustrate how the landmarks of object model and generic model 

are detected is by showing a plot of slice descriptors with respect to the slice location (slice 
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number).  Figure 14 illustrate the plots of area, perimeter, and centroid descriptors.  The 

landmarks are detected from the maximum (minimum) point, as presented in Section 4.1 

whereby the incremental number (δ) is set to 0.001.  The results of the detection and level of 

landmark are shown in Table 4.1. 

Object model  Generic model 
Descriptor Level Slice number  Descriptor Level Slice number 
Area 1 350  Area 1 337 
 2 308, 332   2 622, 636 
 3 361, 373     
 4 628, 640     
Perimeter 1 347  Perimeter 1 351 
 2 608   2 601 
 3 315, 332   3 526, 545 
 4 645     
Centroid 1 125  Centroid 1 98 
 2 394, 445   2 337, 414 
 3 590   3 570 
 4 427   4 449, 488 

 

The plots of rate of change of three slice descriptors are illustrated in Figure 15.  The 

result of landmark detection from this method is shown in Table 2. 

Object model  Generic model 
Descriptor Slice number  Descriptor Slice number 
Area 144, 444  Area 133, 413 
Perimeter 144, 444  Perimeter 133, 413 
Centroid 144, 444  Centroid 133, 413 

 

This implementation only employs landmarks from the first-level since they are the 

most significant points.  Although higher level landmarks were suggested, in practice, they 

have diminishing returns proportional to level and are not used in the hip model case.  As a 

case for future work, second and higher level landmarks may prove more practical in other 

joints, for other cases such as patients with deformities, etc.  The landmarks that will be used 

in the next steps are summarized in Table 4.3.  The locations of these landmarks on the 

object and generic models are also illustrated in Figure 4.16. 

Table 4.1. Landmarks from maximum (minimum) descriptors 

Table 4.2. Landmarks from rate of change of descriptors 
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Figure 4.14. Landmarks from slice descriptors: (a) object model, (b) generic model 
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Figure 4.15. Landmarks from rate of change of slice descriptors: (a) Object model, (b) 
Generic model 
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Object model  Generic model 
Descriptor Slice number  Descriptor Slice number 
Centroid 125  Centroid 98 
ROC 144  ROC 133 
Area 347  Perimeter 337 
Perimeter 350  Area 351 
ROC 444  ROC 413 
  ROC = rate of change of descriptors 

 

 

 

 

 

 

 

 

In this step, one may notice the order of landmarks on the object model differ from 

the order of landmarks on generic model.  The locations of landmarks on the object model 

will be relocated in the next step.  

 

4.6.2. Redefined landmark  

 The locations of landmarks in Table 4.3 are not finalized but do serve as the initial 

landmark locations on both the object model and generic model.  To improve these landmark 

locations, additional methods to match contours in contour analysis are employed.  Only 

locations of landmarks on the object model are adjusted because the contour slices of object 

model contain welded regions which can be a source of uncertainty of the locations of 

landmarks.  On the other hand, the generic model has contour slices which are deemed error-

Table 4.3. Landmarks from section analysis 

Slice 98
Slice 133

Slice 413

(b) 

Slice 337
Slice 351

Figure 4.16. Landmark locations on (a) object model and (b) generic model 

 

Slice 125 
Slice 144 

Slice 347 
Slice 350 

Slice 444 

(a) 
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free; thus landmarks on the generic model will serve as “good” reference locations.  It should 

be noted that landmarks from rate of change of slice descriptors are not redefined since these 

landmarks locate where the slice descriptors of both models are at the extreme points.  The 

landmarks of the object model after they were redefined are shown in Table 4.4 while the 

locations of these landmarks are illustrated in Figure 4.17. 

Object model  Generic model 
Descriptor Slice number  Descriptor Slice number 
Centroid 139  Centroid 98 
ROC 144  ROC 133 
Area 370  Area 337 
Perimeter 377  Perimeter 351 
ROC 444  ROC 413 
  ROC = rate of change of descriptors 

 

 

 

 

 

 

 

 

 

4.6.3. Contour slice matching 

 From figure 4.17, the landmarks are automatically arranged in correct order after the 

redefinition process.  However, boundaries of the first section and the last section are not 

defined.  For instance, it is obvious that the first section of generic model is much shorter 

than the first section of object model.  The slice contours of the generic model may get 

Table 4.4. Landmarks after adjustment 

Figure 4.17. Landmark locations after adjustment on (a) object model and 
(b) generic model 

Slice 337

Slice 98
Slice 133

Slice 351
Slice 413

(b) 

 

Slice 139 
Slice 144 

Slice 370 
Slice 377 

Slice 444 

(a) 
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mistaken matches to slice contours of object model in this section.  To remove unrelated 

contours in this section, a similar process as the redefined landmark process is employed.  

The longer section is first identified by measuring the distance from the first landmark to the 

first slice of the section.  In this case, the section of object model is longer.  Then, the slice on 

the object model that has the same relative distance from the first landmark to the first slice 

of the generic model is marked as the initial location.  The best matches are searched 

between the first slice of generic model and the slices of object model around the initial 

location.  The same procedure is also applied to the last sections of both models.  In this step, 

the final sections of object model and generic model are obtained.  The results are shown in 

Table 4.5. 

Section Object model Generic model 
1 57-139 0-98 
2 140-144 99-133 
3 145-370 134-337 
4 371-377 338-351 
5 378-444 352-413 
6 445-649 414-642 

 

 The next step is to locate the best matches of slices between the object model and the 

generic model in corresponding sections.  However, these matches need to be in sequential 

order.  For example, in corresponding sections, the first slice of the generic model should not 

be matched to the slice near the end of section of the object model while the second slice of 

generic model is matched to the slice near the beginning of the section of the object model. 

To force the matching in logical order, the method in this paper first finds the middle slice in 

the corresponding section of object model and generic model (Figure 4.18a). Then, a match 

of the middle slices is located.  Next, this first match is then used as new boundary to divide 

Table 4.5. Sections of object model and generic model  



www.manaraa.com

59

each section of two models into smaller sections (Figure 4.18b).  The same process is 

continued until the match for each slice of object model is found (Figure 4.18c).   

 

 

 

 

 

 

Figure 4.19 presents a plot of matching slices between slices of object model and 

slices of generic model. This plot shows a good result of consecutive correspondence.  

 

 

 

 

 

 

 

 

 

4.7. Results and Discussion 

 In order to illustrate the improvement of using section analysis and contour analysis 

for registering the two sets of slices three registration methods are compared: 1) naive 

proportion registration, 2) landmark proportion registration, and 3) landmark and contour 

Figure 4.19. Matching results of object model and generic model slices 
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Figure 4.18. Middle slice matching 
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registration.  Naive proportion registers two set of slices without using section analysis and 

contour analysis. The generic model only uses rigid transformation (translation and scale) for 

comparing the object model.  The naive method linearly divides and matches the slices based 

on their locations.  Landmark proportion employs only section analysis in the registration 

method.  This method searches for landmarks between object and generic models and then 

uses those landmarks to divide both models into several corresponding sections.  However, 

only linear matching method is used within the corresponding sections. In the final case, both 

landmark and contour registration is completely implemented for both section analysis and 

contour analysis.  The result of these three registration methods are compared using the 

measurement of similarity as described in Section 4.5.2.  The results from Table 4.6 show 

that using only section analysis can improve average of overall SSD from naive registration 

while using both section analysis and contour analysis improve both average of overall SSD 

and also average of SSD in the sections.    

Section Naive  
Registration 

(SSD) 

Landmark 
registration 

(SSD) 

Landmark and 
contour  

registration 
(SSD) 

1 - 5.04 4.66 
2 - 69.39 69.12 
3 - 40.62 32.59 
4 - 11.21 11.16 
5 - 15.70 14.58 
6 - 15.42 13.58 

Total average 31.25 24.01 20.13 
 

  

The sliced model registration process arranges an order of generic slices based on the 

corresponding slices between object model and generic model.  Some slices of the generic 

model may be repeated and some slices may be skipped.  The pairs of generic slices and 

Table 4.6. SSD of three registration methods 
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object slices can be passed to the weld removal process as mentioned in Section 3 in order to 

fix the welded regions on object slices.  The details of this process will be presented in a 

subsequent paper.  Alternatively, the output of sliced model registration process can be sent 

as feedback to a low-level segmentation process.  For 2D segmentation methods such as 

active shape contour and snake, the contours of generic slices can be directly used as initial 

contours for segmenting scan images (CT or MRI images).  The centroid of the convex hull 

of the slice can be a reference location for mapping the contours of generic slices to the 

image (Figure 4.20).   

 

 

 

 

 

 

 

If 3D segmentation is employed such as active shape model and deformable model, 

3D models of individual bones are reconstructed from the set of matching generic slices.  

Figure 4.21 illustrates a modified generic model that is reconstructed from the set of 

matching generic slices.  A smoothing function could be applied for improving the transition 

between slices before surface reconstruction.  Then, the modified generic model can be used 

as initial models for segmenting CT images in 3D space. 

 

 

Figure 4.20. Modified generic slices for low-level segmentation 

(a) CT image of hip joint (b) Modified generic slices over the image 

Femur contours Pelvic contours
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4.8. Conclusions and Future work 

 This paper presented a sliced model registration process which is an important step in 

developing an automated separation of bone joints for medical images.  The proposed 

method automatically registers the patient’s CAD model (object model) to the known CAD 

model (generic model).  The method divides both models into small sections.  It first finds 

the corresponding sections of both models, and then redefines the results by matching slices 

in related sections.  As the implementation showed, the proposed method is more robust than 

a rigid registration that only uses translation and scale.  Output obtained from this registration 

process can be utilized in a weld removal process which is a process to repair and remove the 

welds on object model.  This output could also be used in low-level segmentation to improve 

segmentation result of objects in slice images.  In addition to registering medical entities, the 

proposed method might also be applied to measure the similarities of models that lack feature 

recognition.  For instance, it could compare a model from reverse engineering using 3D 

scanning to its original CAD model, or compare a manufactured component against its 

known CAD model design.     

  

Figure 4.21. Modified generic model for low-level segmentation 

(a) Object model (b) Generic model (c) Modified generic model 
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 This paper presents a functional method for dividing the bones of the joint; however, 

there are several opportunities for future directions.  Although the orientation of bones is 

assumed to be fixed based on the standard medical procedures to obtain the images, 

performance of the proposed method could be reduced if the angles between the bones in the 

joint of the object model are different from those of the generic model.  Another 

improvement would be to expand the number of geometric attributes or slice descriptors for 

other type of joints including knee, elbow, and ankle; as each type of joint may respond to 

different slice descriptors.   
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CHAPTER 5. AUTOMATED SEPARATION OF BONE JOINT STRUCTURES FOR 
MEDICAL IMAGE RECONSTRUCTION – PART II: A METHODOLOGY FOR 

MODEL SEPARATION 
 

Wutthigrai Boonsuk and Matthew C. Frank 

 

5.1. Abstract 

 The separation of a reconstructed bone model in the joint area is a challenging task, 

due to surrounding soft tissue and adjacent bones which can make bone boundaries 

ambiguous.  Traditional image segmentation may not provide proper bone boundaries, 

resulting in an inadvertently combined model that has the bones of a joint merged after the 

reconstruction process.  To avoid this problem, manual modification from medical experts is 

necessary to correct improper results of segmentation before the joint model is reconstructed.  

However, this manual task is time consuming, laborious, and unrepeatable.  This paper 

proposes a methodology to automatically separate bones in the joint area by incorporating a 

generic model as a surrogate for the anatomical knowledge of experts.  This model represents 

a standard CAD model that has all bones of the joint properly separated.  The object model is 

the CAD model of the joint which is directly reconstructed from the segmentation results of 

the patient’s CT images.  Initially, the model directly from the patient is allowed to be 

combined; as traditional segmentation methods will still be employed.  When the bones of 

the joint are joined due to these errors, we will refer to the regions of object model where the 

bones are combined as welded regions.  The method developed in this paper first registers a 

generic model and object model; then, welded regions are detected and removed from the 

object model based on comparisons from the object model to the standard generic model.  
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The repaired results will be called hybrid contours or a hybrid model since it will be a 

combination of the object model and selected portions of the generic model (areas that were 

lost on the object model due to welding).  An implementation of the methods shows how the 

reconstructed model using hybrid results shows improvement in approximating the object 

automatically from CT images.  Since the proposed method is rapid and robust, the hybrid 

results can also be used as feedback to the original low level segmentation process to avoid 

the occurrence of welding altogether.   

 

5.2. Introduction 

Image segmentation and surface reconstruction are the two major process steps used 

to generate CAD models from 3D medical images such as computed tomography (CT) or 

magnetic resonance imaging (MRI).  The images are first segmented in order to separate the 

object of interest (bone) from image background (soft tissue, etc.).  The results of 

segmentation are used in the subsequent reconstruction process to create a CAD model.  

Figure 5.1 illustrates the most basic steps of the process. 

  

  

 

 

 

CAD models from medical images are used broadly in both medical and non-medical 

applications, from diagnostic to surgery planning to animation and biomedical manufacturing 

of implants and prostheses.   One major challenge in creating the CAD models is that a 

Image 
Segmentation 

Surface 
Reconstruction

CAD 
Model 

Figure 5.1. Steps for creating CAD model from medical images 

Medical 
Images 
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skilled technician is needed when segmenting the bone joints; one must know which bones 

constitute the joint and where they interface.  However, in this research we will assume the 

experts are not available in the process; hence since we wish to completely automate the 

process within software.  To this end, computer algorithms are proposed to substitute the 

expert’s task and generic models of the bone joint are used to substitute that expert’s 

knowledge of the anatomy. 

Segmentation can be classified into two levels: low-level segmentation and high-level 

segmentation [2].  Low-level segmentation refers to a process that detects and retrieves 

important features from the images and translates them into explicit data.  This level of 

segmentation commonly serves as the beginning step of overall segmentation process.  

Selecting threshold density values, for instance, can separate bones from image background.  

However, the results from this level of segmentation are not adequate for properly 

reconstructing complex structures.  For example, reconstructing bones in joint areas is not 

easy because the surrounding soft tissues and adjacent bones are likely to have similar grey 

scale.  Low-level segmentation may fail to identify the proper boundaries of the bones.  In 

addition, although the bone boundaries are well defined, the model still cannot be created 

correctly because the reconstruction process requires appropriate topological data to 

reconstruct individual bones.  The problems are addressed in [1, 14, 21] as the 

correspondence problem and the branching problem.  Many researchers attempted to solve 

these problems [14, 3, 6, 21] but the solution is only suitable for reconstructing one bone at a 

time; the remaining bones must be manually excluded before reconstruction process.  

Without manual operation, the finished model is a combined model of individual bones.  

Figure 5.2a illustrates a model of a hip joint where the femur and pelvis are combined after 
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the model is reconstructed from low-level segmentation results.  In this paper, the area where 

the bones are combined will be referred as welded regions since it looks similar to a weld in 

metal joining operations. 

 

 

 

 

 

 

 

 

High-level segmentation is essential to fixing this weld problem.  This level of 

segmentation repairs faulty boundaries of individual bones and provides topological data for 

proper reconstruction.  Usually, this high-level segmentation is conducted by experts who 

will inspect the slice images and manually correct the results of low-level segmentation.  The 

steps of high-level segmentation can be illustrated in Figure 5.3.  The CT image of the hip 

joint (Figure 5.3a) is first segmented using low-level segmentation.  The results of low-level 

segmentation have femur and pelvis contours combined (welded regions) as shown in Figure 

5.3b.  High-level segmentation is manually performed to repair the welded regions, and 

assign the contours to individual bones (Figure 5.3c and 5.3d).  This manual approach is 

tedious and time consuming because the modification must be repeated for hundreds of slice 

images.  The results are also non-repeatable since they are based on user skill and judgment. 

 

 

 

Figure 5.2. Low-level segmentation and high-level segmentation: (a) hip joint after 
low-level segmentation and (b) hip joint after high-level segmentation 

(a)  
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This paper proposes a method that employs a generic model as anatomical knowledge 

of the expert.  The generic model is a complete CAD model that has all bones separate and 

closely represents the object of interest in the patient’s scan data.  From patient’s data, the 

CAD model is reconstructed using a low-level segmentation approach.  This patient’s model 

is called the object model and will be utilized to compare to the generic model.  The method 

first allows the object model to contain welded regions, later removes the welds, providing 

separated individual bones.  The framework of this approach is illustrated in Figure 5.4.   

For this method, registration between the object model and generic model is first 

obtained so that the two models can be compared.  The methods for registration had been 

proposed in previous work.  It is assumed that the registration process was completed and the 

results of registration will be further used to repair welded regions.  The goal of this paper is 

to separate and repair the bone boundaries where the welded regions occur.  The contents of 

this paper will be organized as follows.  Related literature is reviewed in the next section and 

an overview of the solution methodology is presented in Section 5.4.  The methods to remove 

Figure 5.3. Steps of high-level segmentation: (a) CT image of hip joint, (b) 
contour after low-level segmentation, (c) high-level segmentation 
by manual modification, (d) contours after high-level segmentation 
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and repair welded regions are proposed in Section 5.5 and 5.6.  The implementation and 

results are shown in Section 5.7 and finally, conclusion and future work are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Related Work 

 Segmentation is intended to extract the object of interest from medical images and 

has been a subject of research for decades; however, the automated segmentation of bone 

joints has not been sufficiently developed.  Traditional techniques using low-level 

segmentation approaches such as thresholding, edge detection, region growing, and 

  

 

 

 
 

 

   

 

 

Object model Generic model 

Welded regions No welded regions

Repairing 
welded regions 

Bones are 
separated 

Figure 5.4. General steps in the proposed methodology  

Registration 
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morphology operation [15, 18] usually give mistaken results where the grey scales of 

adjacent structures (bones and soft tissues) are similar.  Westin [26] introduced an adaptive 

filter for enhancing boundaries of adjacent bones; however the method works well only when 

the gap between the bones is noticeable.  Often, medical experts manually correct the 

boundaries of the bones; however, manual editing cannot be utilized in a truly automated 

system.  Although adjacent bone boundaries may be detectable to human vision, replacing 

the perception of human vision with computer programs or mathematical processes is still 

challenging.   

Since traditional techniques are not sufficient to identify proper edges of bones in 

joint areas, knowledge-based techniques have been adopted to improve the results of 

segmentation.  These techniques include snake, deformable contour, active shape contour, 

deformable model, and active shape model [8, 4, 10, 7].  The methods add prior knowledge 

such as shape constraints in order to segment images.  The constraints ranged from numerical 

solutions to statistical solutions in order to control the deformation of initial 2D contour or 

initial 3D model.  The weakness of these methods is that the results of segmentation are 

sensitive to the initial position of the contour or model within the medical images.  For bone 

joints, the position of the contour or model is critical since the spaces between adjacent bones 

are relatively small and misaligned position can cause unpredictable results.  In addition, this 

alignment step is still manually adjusted by an expert.  Heo [5] and Pardo [13] recommended 

using contours from previous image slices as initial contours for 2D segmentation; however, 

a solution for changes in topology was not addressed.  In bone joints, not only the number of 

contours can be different, but also the type of bones can change between slices.   
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Several methods for bone joint segmentation have been developed for specific type of 

bones.  Zoroofi [27] proposed the moving disk technique to search for boundaries of the 

bones.  The method required the initial center location of the bone; however, automated 

selection of this location was not addressed.  Shen [22] not only employed a 3D model as 

prior knowledge but also included features such as abrupt edges and ridges for segmentation.  

His initial shape was not easy to develop and it needed to be generated for individual types of 

joints.  Liu [9] presented segmentation of the bone joint using a rigid 3D model as prior 

knowledge.  This work focused on using the model created from the first set of images to 

subsequently segment the same bone which had different position and orientation.  The 

variation of the bone among each person may cause an uncertainty. 

In this paper, high-level segmentation is achieved by employing a CAD model of the 

bone joint (generic model) as prior knowledge.  However, the proposed method does not 

utilize this model for segmenting images.  This generic model is compared to a CAD model 

(object model) that was initially reconstructed from patient’s images.  The object model may 

contain welded regions which have two or more bones combine in joint area.  This paper will 

focus on a method to repair these welded regions.  The main idea is to utilize some parts of 

the generic model to fix the welded regions.  This idea is analogous to fixing bad pixels of 

one image by good pixels of a similar image.  Several researches applied this idea for 

repairing incomplete data, such as Pauly [16], who proposed a method to fill missing surfaces 

of a 3D model with surfaces of prior shapes.  The results showed an advantage over 

interpolation of end points to fill the missing surfaces.  Rakshe [19] proposed a method to 

reconstruct incomplete contours of an arterial centerline by using the estimated contour from 

several sets in a database.  
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 In this paper, the method involves firstly removing the welded regions from the 

object model.  Then, the removed contour sections are replaced by the shapes of the generic 

model.   

 

5.4. Overview of Methodology 

In this section, an overview of the general solution methodology involving generic 

models for high-level segmentation is presented.  The generic model is given a similar 

orientation and scale as the object model which retains the same position of the object from 

its CT images.  The generic model could be created by finding a mean shape from several set 

of CT images as the method was suggested by Shen [22].  In addition, a library of generic 

models may be used to provide a closer approximated model by sorting on several criteria 

such as gender, age, height, and ethnicity.   

The purpose of using object model is to reduce the complexity and numerous data 

contained in the CT images with a 3D model that can be sliced into polygonal contours.    

Starly [23] describes the steps to reconstruct a CAD model from CT images and in this paper, 

the object model is obtained without expertise using known low-level segmentation and 

reconstruction tasks.  Once the CAD models are created, they are sliced in order to simplify 

the geometric complexity.  A slice representation is very common for rapid prototyping 

processes [17] in representing freeform objects for a similar reason; in the case of RP, it 

reduces the tasks involved in process planning.  Both the object model and generic model are 

cut into this series of slices along the same oriented direction.  Each slice of the models 

contains 2D polygonal contours (cross sections) of one or more bones.  From the fact that the 

object model is created from image slices, if the object model is sliced at increments equal or 
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smaller than the thickness of image, the set of slices should be adequate in representing the 

objects scanned in the medical imaging process.  The benefit of using a slice representation is 

that the complex 3D surfaces of welded regions are transformed into simple 2D polygon 

contours where two or more contours from different bones are inadvertently combined 

(Figure 5.5). 

 

 

 

 

 

 

 

 

 

A schematic of the overall process for bone joint separation in high-level 

segmentation is illustrated in Figure 5.6.  Sliced model registration and weld removal are 

proposed as two automated processes for high-level segmentation.  Sliced model registration 

is first used in order to align sets of slices between the object and generic models.  Two 

analyses are employed within the sliced model registration process: 1) section analysis and 2) 

contour analysis.  The purpose of these analyses is to find the slice of the generic model that 

most closely represents the slice of the object model.   

 

 

 

Figure 5.5. Slice of object model of hip joint 
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Section analysis serves as a coarse registration process that divides the slices of the 

two models into several corresponding sections.  The registration results are refined within 
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Medical Images 
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Figure 5.6. Process steps for automated system in high-level segmentation 
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the subsequent process, contour analysis, which identifies closest pairs of slices in 

corresponding sections.  Two feedback items are generated from the registration process: 1) 

match percentage and 2) modified generic slices or a modified generic model.  The first 

feedback, match percentage, is the measurement of similarity between the object and generic 

models.  This feedback could be iterated in order to search for the best generic model from a 

database that closely approximates the object model.  The second feedback, modified generic 

slices or a modified generic model, are generated from the output of sliced model registration 

process.  This feedback can be sent to low-level segmentation in order to improve the results 

of segmentation in a second or subsequent iteration.  The modified generic slices could be 

utilized as initial contours for 2D segmentation, and similarly, the 3D model can be 

reconstructed and used for 3D segmentation.  Several existing methods found in the literature 

could be improved upon using this form of iterative feedback (i.e.: active shape contour, 

deformable contour, active shape model, deformable model, etc.). 

In this paper, it is proposed that the registration process results can be used in the high 

level process of separating the bones of the joint by removing the welded sections of the 

object model.  However, the areas where the welds are removed need to be repaired before 

the separated model is reconstructed.  This paper proposes weld detection and weld 

modification as two steps in the weld removal process.  Weld detection utilizes the results of 

sliced model registration to evaluate if the slices of the object model contain welded regions.  

Weld modification then uses the contours of the corresponding generic slice to restore the 

proper shapes of the contour on the object slice.  In this manner, a hybrid contour is formed, 

which is actually a combination of the original object contour minus the welded region and 

the replacement portion from the generic contour (Figure 5.7).  One feedback from the weld 
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removal process, a percentage of weld perimeters, can be indirectly used to minimize the size 

of the welded regions created on the object model.  That is, some parameters during low-

level segmentation such as thresholding values, filtering parameters, and morphological 

parameters could be adjusted based on the percentage of welds that is detected in this 

subsequent process.  The output of weld removal process is the hybrid slices that have all 

contours of individual bones separated and assigned.  At this point, the process could be 

halted and the models of the individual bones (hybrid models) could be reconstructed.  

Alternatively, the outputs (hybrid slices or hybrid models) could be used as initial contours or 

initial models within existing low-level segmentation processes from the literature.   

 

 

 

 

 

 

 

The scope of this paper is focused on the weld removal process; therefore, the sliced 

model registration process is assumed to be completed and available for use in weld removal.  

Next, sections 5.5 and 5.6 will present the details of the two major processes of weld 

removal: 1) weld detection and 2) weld modification. 

 

5.5. Weld Detection  

Figure 5.7. Weld modification

 

(a) Object contour 

 

(b) Generic contour 

   

 

(c) Hybrid contour 

Object contour 
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 Weld detection refers to a process that verifies if there are welded regions on the 

object slice, and locates them by comparing to the corresponding generic slice.  Since each 

contour of generic slice is already assigned to individual bones, this information can be used 

to recognize contours of the object slice.  At the beginning of the process, a transformation is 

executed to align the generic and object slices.  This transformation, T( ), is a translation and 

scale in the xy plane (2D).  The generic slice (G) is transformed to G~  and is defined as: 

  )~,~(~ yxG  = ( )),( yxGT   where ),( yx  and ∈)~,~( yx  R2   (1) 

The point (x,y) of a generic slice is translated the distance  between the centroid of the 

convex hull of both slices (Δcx, Δcy).  Then, this translated point is uniformly scaled relative 

to the centroid (cx, cy) by factor S.  
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The uniform scale S is computed by iterating a small number to minimize the 

difference of area between convex hull of generic slice (CHG) and convex hull of object slice 

(CHO). 

   MIN   { | Area(CHG) – Area(CHO)| }    (3) 

The initial alignment step is illustrated in Figure 5.8 where a generic slice is 

transformed to fit the object slice.  As shown in Figure 5.8, a convex hull polygon is 

employed in this alignment because the contours on the object slice and generic slice can be 

dissimilar where the welded regions appear but the convex hulls of either slices will not be 

affected by welding. 
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After the alignment step, the proposed method detects the welded regions in two 

levels: 1) contour level and 2) vertex level.  Within the contour level, the method identifies if 

any contours on the object slice contain welded regions.  This level of detection serves as a 

coarse evaluation step.  If there are welded regions on the slice, then the locations of welded 

regions are further analyzed at the vertex level.   

5.5.1. Contour level 

  The intersections of generic contours and object contours are computed to evaluate if 

there are welded regions.  Since generic contours have been assigned to individual bones, if 

one object contour intersects two or more generic contours that belong to different bones, this 

object contour contains welded regions. Contours of the generic slice (P) and object slice (Q) 

are given by: 

Figure 5.8. Aligning slices using convex hulls of both the generic 
slice (CHG) and object slice (CHO) 
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  where different types of bones are listed in row (1, 2,…, n) 

 Q = { }mQQQ ,..., 21  where m = total number of contours 

The intersections of contours on P and Q are computed.  The welded regions are 

identified when 

 kai QP ∩  and kbj QP ∩      if a ≠ b, then Qk contains welded regions 

 

 

 

 

 

 

 

 

Figure 5.9 illustrates the object slice that contains the welded regions.  On the other 

hand, if Qk intersects contours of P that are listed on the same row (same types of bones), Qk 

can be classified to the bones on that row. For example 

  kai QP ∩     if only row a intersects, then Qk = Qak 

There is a possible case where a contour of the object slice does not intersect with any 

contours of the generic slice.  This case (Figure 5.10) may occur where a bone end is reached 

or a new bone appears along the slice axis.  From Figure 5.10a, Q2 cannot identify with any 

contours of the generic slice (P11 and P21).  Since the transition of contours between object 

slices is generally consistent, the problem can be handled by intersecting the unidentified 

   

Q1 P11 

P21 

(a) Object contour (b) Generic contour (c) Contour intersection 

P11 ∩ Q1 

P21 ∩ Q1 

Figure 5.9. Contour intersection: Q1 contains welded regions 
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contour with identified contours on a previous object slice or the next object slice (Figure 

5.10b).   

 

 

 

 

 

 

  

  

Once welded regions on the object contours are identified, the location of welded 

regions are further analyzed at the vertex level. 

5.5.2. Vertex level 

  At the vertex level, the method first focuses on regions of the object contour that can 

result in welds, and then identifies each vertex in that region for separating the contour into 

individual bones.  The corresponding generic contours are generally used for identifying the 

vertices of the object contour.  In theory, if two or more polygons are adjacent, the welded 

regions are restricted to the space between these polygons and contained inside the convex 

hull of the polygons.  This assumption is analogous to finding the intersection between two 

polygons presented by Toussaint [24]. 

Figure 5.11, for example, illustrates when polygon P11 and P21 are adjacent.  Segment 

s1s2 and s3s4 are the bridges on convex hull which connect between P11 and P21.  The welded 

regions in this case are enclosed in the space between s1s2, s3s4, and the middle region 

between P11 and P21.  Polygon P11 and P21 can be divided into two chains using the start and 
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Figure 5.10. Intersection error between object contour and generic contour 
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end points of the bridges (s1, s2, s3, and s4).  Parts of contours inside the closed area are called 

inner chains and those outside the closed area are called outer chains. 

 

 

 

 

 

 

 

 

 

If Q1 is identified as a welding contour in the previous contour level and P11, P21 are 

generic representations of Q1, the corresponding bridge points on Q1 can be computed by 

finding the closest points from Q1 to point s1 and s4 of P11, and from Q1 to point s2 and s3 of 

P21.  These new bridge points (t1, t2, t3 and t4) on Q1 are used as the furthest boundaries that 

contain the welded regions (Figure 5.12).   

 

 

 

 

 

 

 

 

s1 

s2 

s3 

s4 

P11 

P21 

Q1 
 

s1 

s2 

s3 

s4 

t1 

t2 

t3 

t4 Q1 

Figure 5.12. Bridge points t1, t2, t3 and t4 on object contour Q1 
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Figure 5.11. Convex hull of two polygons
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Locations between the start and end of bridge points on the object contour (t1 to t2 and 

t3 to t4) can be where the two contours of adjacent bones are connected.  In order to identify 

the connecting points, the vertices between the bridge points need to be recognized.  In the 

proposed method, rays are extended from these vertices to intersect generic contours as a 

process of identification.  The general idea is to identify the vertex to the closest generic 

contour that the ray intersects.  The direction of the ray is computed from an average of 

normal vectors on its neighbor segments.  Figure 5.13 illustrates how the direction of vector 

(Voi) at object vertex is computed from normal vector ui and ui+1 next to the vertex. 

   Voi  =  Average(ui, ui+1)     (4) 

 

 

 

 

 

 

 

If the ray intersects the generic contour, the vertex of the object contour may be 

assigned to the same bones that the generic contour is assigned to.  However, the closest ray 

intersection can be ambiguous in the regions where generic contours become close to each 

other.  Thus, the proposed method also compares the directions of vectors between the object 

and generic contours in order to assign the vertex of the object contour.  Figure 5.14a 

illustrates how the vector direction from the vertex of the object contour (Voi) is compared to 

the vector direction of the generic contour (Vgi) at the intersection point.  It should be noted 

Figure 5.13. Directions of vectors at object vertices 
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that the vector direction on the intersection point is computed by averaging two vectors of 

neighbor vertices. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the closest intersection of the ray and generic contour, the difference of vector 

direction between Voi and Vgi is computed.  The difference can range from 0 to π radians.  In 

order to prevent improper intersections, the allowable angle between Voi and Vgi is set to a 

small range of π/3.  This value was derived through preliminary experimentation using 

Figure 5.14. Vertex assignment at vertex level 
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human hip joints; however it is not proposed to an optimal general value.  An example of 

vertex assignment is illustrated in Figure 5.14b. 

 After the steps of ray intersection and comparing vector direction, each vertex of the 

object contour between the bridge points may be assigned to one of the bones that the generic 

contour is assigned to.  The case may arise where the vertex of an object contour cannot be 

assigned to any bone.  This occurs when the ray from the vertex of an object contour does not 

intersect with any generic contours or the difference of vector direction is larger than the 

allowable angle at intersection points.  These unassigned vertices can be reassigned if they lie 

between vertices that are assigned to the same bone.  The vertices of object contour are 

searched and reassigned from each bridge point to the other side.  The process stops when a 

vertex that belongs to a different bone is found. 

 

 

 

 

 

 

 

 

 

At this point, the vertices of the object contour between the bridge points can be 

grouped into the same bones and joined with portions of contour outside the bridge points 

(outer chains) to form partial contours (Figure 5.15).  The object contour is now divided into 

partial contours that belong to individual bones.  The next challenge is to recreate complete 
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(second bone) 

Figure 5.15. Partial object contours 
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contours from these partial contours.  In other words, the missing data at the ends of partial 

contours need to be regenerated so the loops can be closed.  

 

5.6. Weld Modification  

 Weld modification is a process to repair the welded regions by modifying the partial 

object contours after the weld identification process.  The purpose of this modification is to 

create complete contours from partial contours that belong to individual bones.  There is a 

common method in the literature that utilizes curvature at the end points to close the partial 

contours.  However, the result can be uncertain if the shape of the contour is complex or the 

amount of data to restore is very large.  Instead of using the curvature at the end points, the 

method in this paper employs portions of generic contours to fill the missing parts of partial 

contours.  The main reason is because generic contours represent how the object contours 

should approximately appear if the welded regions are removed.  The newly formed contours 

called hybrid contours will be a combination of portions of both object and generic contours 

(Figure 5.16c). 

 

 

 

  

  

 

The steps of repairing the partial object contour with portions of generic contours are 

illustrated in Figure 5.16.  To begin the weld modification process, location of cutting points 

 
  

Cutting points 

Partial object 
contour 

Generic 
contour

Partial generic 
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Hybrid contourPartial object 
contour 

(a) (b) (c) 
Figure 5.16. Hybrid contour 
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needs to be identified.  Cutting points are where the object contour and generic contour will 

be connected.  The cutting points should be first located near the end of the partial object 

contours.  Then, rays are extended from these cutting points on the object contour to the 

generic contour.  The intersections at the generic contour determine cutting points that divide 

the generic contours into partial contour sections (Figure 5.16a and 5.16b) that will be used 

to replace the missing portions of object contours.  From the weld detection process 

described in the previous section, the bridge points on the object contour represent the 

boundaries that the welded regions can possibly occur; therefore the proposed method 

determines locations of cutting points between the bridge points and the end points of partial 

object contours.  In order to improve continuity between partial object and partial generic 

contours, the method determines the cutting points by considering both minimum distance 

and minimum difference of vector directions.  The distance is measured from the object 

vertex to intersection points on the generic contour (di).  The difference of vector directions 

(vdi) is the angle between the vector on a vertex of the object contour and the vector of the 

intersection point on the generic contour (Figure 5.17)  
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Figure 5.17. Distance from object vertex to intersection point (di) 
and the difference of vector directions (vdi) 
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Both distance and direction difference values are divided by their maximum to make 

them scale invariant.  The cutting point is then given by: 

   min
⎭
⎬
⎫
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⎤
⎢
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⎡
+⎥

⎦

⎤
⎢
⎣
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)max()max( 21

i
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i

i

vd
vd

w
d

d
w    (5) 

  where w1 and w2 are weights associated with each variable 

Optimal settings for weights are not a subject of the current research, as these values 

may change for different joints, imaging methods, etc.  They are included for completeness, 

but simply set equal for the current implementation based on preliminary testing.  Once 

cutting points are determined, the partial generic contours are created and used for filling the 

gap on partial object contours.  A transformation is required to initially fit these partial 

generic contours to partial object contours.  This transformation consists of three steps: xy 

translation, rotation, and scaling:    

 Partial object contour (Q) is defined as  

   Q(xqi, yqi) where i = 0, 1, 2,…, n 

 and partial generic contour (P) is defined as 

   P(xpj, ypj) where j = 0, 1, 2,…, m 

 If the cutting points (end points) of partial object contour are given as (xq0, yq0) and 

(xqn, yqn) and the end points of partial generic contour are (xp0, yp0) and (xpm, ypm), the 

transformation is defined as the following matrixes [25]: 
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Rotation:  
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where  θ  = the angle of rotation and (xq0, yq0) = the point of rotation 
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where  ( mpx~ , mpy~ ) is end point of the partial generic contour after translation and 

rotation  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Example of transformation to create hybrid contour 
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Figure 5.18 illustrates the steps involved in transforming a partial generic contour to 

complete the missing portion of the object contour.  Once the partial object contours are 

repaired, the newly formed hybrid contours can be assigned to each individual bone, enabling 

surface reconstruction. 

There is a special case where the proposed method for weld detection at the vertex 

level and weld modification fails to find a solution.  This case is when the generic contour is 

fully contained within the convex hull of the slice (Figure 5.19).  The reason for failure is 

that the bridge points that connect two generic contours do not exist.  The proposed solution 

for this case is to insert both the interior chain and contained generic contour into the partial 

object contour.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.19. Fixing steps for fully contained generic contour 
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Figure 5.19 illustrates the modification steps for this special case.  At the beginning, 

the interior chain that fully contains the generic contour is identified (Figure 5.19b).  The 

points on the convex hull boundary where the interior chain is closed are used as cutting 

points on the generic contour.  The cutting points on the object contour are determined by 

finding the closest points between cutting points on the generic and object contours (Figure 

5.19c).  The partial object contour and partial generic contours are created (Figure 5.19d).  

The partial generic contour (interior chain and contained contour) is transformed to fit the 

gap within the partial object contour (Figure 5.19e).  The transformation matrices are 

computed as previously discussed.   

This section presented a reliable weld detection and modification process that utilizes 

portions of a standard generic CAD model of the bone joint.  In next section, we present an 

implementation of these methods with an example human hip joint model. 

 

5.7. Implementation 

 The methods for weld detection and weld modification were implemented using C++ 

language and the results graphically displayed using OpenGL.  Testing was performed on an 

Intel Core 2 Duo (2.4 GHz, 2 GB memory) PC.  Two sets of CT images of hip joints from 

the sample sets on the OsiriX website [12] were used in this implementation.  The first hip 

model was manually segmented and reconstructed using standard medical imaging software 

called Mimics [11] and designated as the generic model (Figure 5.20a).  In practice, one 

would choose a generic model that closely relates to the patients age, gender, height, etc.  As 

the generic model, the tedious process of manually segmenting and assigning contours was 

executed to the extent that a successfully separated set of bones was created.  The second hip 
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model was reconstructed in Mimics using only low-level techniques including thresholding 

and region growing.  This model was designated as the object model and the welded regions 

expectedly occurred where the femoral head and pelvis socket (acetabulum) are adjacent 

(Figure 5.20b).   

Both object and generic CAD models were sliced with 0.01” (0.254 mm) spacing and 

the two slice sets were registered using a previously proposed sliced model registration 

process (discussed in Section 5.4).   The sliced model registration process outputs 593 slices 

of object model and their corresponding slices of generic model.  The implementation in this 

section will utilize the output of this registration process for subsequent weld detection and 

weld modification.   

 

 

 

 

 

 

 

 

 

 

 

 

5.7.1. Weld detection 

 

 

Figure 5.20. (a) Generic model and (b) Object model 
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 The corresponding generic slices are first transformed to align with the object slices.  

At the contour level, the intersection of contours on generic slices and object slices is 

computed to determine if any contours on object slices contain welded regions.  Figure 5.21 

illustrates the result of weld detection at the contour level.  For example, the contours of 

object slices from slice 0 to 86 are identified as femoral contours and there are no welded 

regions in this section.  According to Figure 5.21, the welded regions between the femur and 

pelvis start at object slice 286 and continue until slice 466 (181 contours).  
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Figure 5.21. Diagram of results of weld detection in contour level 
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An example of weld detection at the vertex level is illustrated in Figure 5.22.  The 

bridge points of the convex hull are first computed for the generic slice.  The corresponding 

bridge points on the object contour are then identified (Figure 5.22a).  Each vertex between 

the bridge points on the object contour is assigned to a single bone by extending rays that 

intersect generic contours.  At this point, the object contour can be divided into partial 

contours that are assigned to individual bones (Figure 5.22b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22. Results of weld detection at the vertex level 
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5.7.2. Weld modification 

In the weld modification process, cutting points are first identified between the end 

points of partial contours and the bridge points.  This is done by minimizing the summation 

of the nominal value of distance and nominal value of directional difference.  Once the 

cutting points are located, partial object contours and corresponding partial generic contours 

are created (Figure 5.23a and 5.23b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The partial generic contours are then transformed to complete the partial object 

contours.  Finally, the hybrid contours of individual bones are created (Figure 5.23c).  The 

Figure 5.23. Weld modification process 
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special case where the generic contour is fully contained inside convex hull of the slice is 

detected at slices 465 and 466 of the object model.  The contours on these object slices are 

repaired by the proposed special case method described in Section 5.6.  Once the welded 

regions are removed from all object slices, the repaired contours of object slices (hybrid 

contours) are assigned to individual bones.  The computation time for each process is shown 

in Table 5.1.  The total time of weld removal process for the example joint is less than 200 

seconds. 

Process Time (seconds) 
Weld Detection 187 
Weld Modification less than 2 

 

 

5.7.3. Results 

 3D Models of femur and pelvis were reconstructed from the hybrid contours of 

individual bones to illustrate the results of implementation.  Each model (hybrid mode) is 

created using volume-based techniques within reverse engineering software (Rapidform 

[20]).  Figure 5.24 shows the reconstructed models of femur and pelvis and regions on the 

models that were repaired by generic contours. 

 

 

 

 

 

 

 

Table 5.1. Computation times for weld detection and weld modification  
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Table 5.2 shows the area of the fixed regions on both femur and pelvis models and 

the percentage of the fixed area out of total area. 

Bones Area of repaired regions % of repaired area  
Femur 6.474 in2 (4176.996mm2) 17.8 
Pelvis 6.784 in2 (4377.075mm2) 12.5 

 

  

The hybrid model may be used as an approximated model (finish model) or it may be 

utilized in an iterated low-level segmentation process in order to extract the object from CT 

images.  This paper evaluates the improvement of using a hybrid over a generic model by 

comparing both models to a reference model from manual segmentation.   Figure 5.25 

illustrates a hybrid model, generic model, and the reference model from manual 

segmentation.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2. Repaired regions 

   

   

(a) Hybrid model (b) Generic model (c) Reference model 

Figure 5.25. Hybrid model, generic model, and reference model 
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The surface-to-surface deviation model surfaces were measured using an inspection 

tool in Rapidform software and presented in three parts.  Part I illustrates the deviation 

between the entire models.  Part II specifically focuses on the deviation of sections that are 

related to the welded regions.  Lastly, Part III shows the deviation results if global surface 

smoothing is applied to the hybrid model. 

5.7.3.1. Part I 

 In Part I of the evaluation, the whole surfaces of hybrid and generic models are 

compared to the surfaces of the reference model.  It should be noted that since the hybrid 

model is created based on objects generated from the same CT images, the hybrid model is 

automatically aligned with the reference models.  On the contrary, the generic model requires 

surface registration with the reference model before comparison.  Manual registration was 

repeated 10 times in Rapidform software to capture variability of this registration process, to 

avoid bias of the surface deviation from registration rather than fitting accuracy of the hybrid 

model.  Femur and pelvis bone models are individually compared and their deviation results 

are illustrated in Table 5.3. 

As shown in Figure 5.26, the femur and pelvis of hybrid model have lower maximum 

and average surface deviation than those of the registered generic models.  Specifically, the 

maximum surface deviation of the hybrid femur is 13-34% lower than the maximum surface 

deviation of the generic femur, and the average surface deviation of the hybrid femur is 61-

63% lower than the average surface deviation of the generic femur.  For the pelvis model, the 

maximum surface deviation of the hybrid model is 30-40% lower than the maximum surface 

deviation of the generic model and the average surface deviation of hybrid model is 45-46% 

lower than the average deviation of the generic model.  In addition, in all cases the standard 
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deviation and root mean square error (RMS) of the hybrid model are lower than those of 

generic model.  Based on these results, it is clear that the hybrid model has an improvement 

over the generic model, an improvement over the methods found in the literature that 

likewise use standard/generic models. 

Femur 
Type: Hybrid Generic 1 Generic 2 Generic 3 Generic 4 Generic 5 
Max: 0.2596 0.3207 0.2969 0.3040 0.3940 0.3370 
Average: 0.0225 0.0602 0.0587 0.0582 0.0598 0.0601 
Std dev: 0.0242 0.0475 0.0476 0.0475 0.0482 0.0481 
RMS: 0.0330 0.0767 0.0756 0.0751 0.0768 0.0770 
Type:  Generic 6 Generic 7 Generic 8 Generic 9 Generic 10 
Max:  0.3444 0.3094 0.2991 0.3576 0.3075 
Average:  0.0596 0.0582 0.0588 0.0594 0.0584 
Std dev:  0.0481 0.0477 0.0473 0.0482 0.0477 
RMS:  0.0766 0.0753 0.0755 0.0765 0.0754 

Pelvis 
Type: Hybrid Generic 1 Generic 2 Generic 3 Generic 4 Generic 5 
Max: 0.2273 0.3413 0.3629 0.3541 0.3784 0.3780 
Average: 0.0408 0.0754 0.0742 0.0743 0.0749 0.0744 
Std dev: 0.0278 0.0586 0.0564 0.0575 0.0591 0.0579 
RMS: 0.0494 0.0955 0.0932 0.0940 0.0954 0.0943 
Type:  Generic 6 Generic 7 Generic 8 Generic 9 Generic 10 
Max:  0.3614 0.3339 0.3226 0.3486 0.3737 
Average:  0.0748 0.0750 0.0750 0.0749 0.0744 
Std dev:  0.0589 0.0579 0.0570 0.0574 0.0578 
RMS:  0.0952 0.0948 0.0942 0.0944 0.0942 

Unit: inch (x 25.4 millimeter) 
 

 

 

 

 

 

 

 

 

 

Table 5.3. Surface deviation of hybrid model and registered generic models 
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Figure 5.26. (a) Maximum surface deviation and (b) Average surface 
deviation of hybrid model and registered generic models 
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5.7.3.2 Part II 

In Part II of the evaluation, the specific section of the hybrid model where welded 

regions were repaired is further investigated.  Although the hybrid model was shown to be 

generally superior to the generic model, this may have been due to the variation of surfaces 

outside the weld areas; hence, we wish to specifically target the welded regions.    Moreover, 

if the hybrid model will be employed in low-level segmentation, it may be that the only 

feedback necessary will be where welding occurred (assuming other errors were not present).  

Only the sections of the CAD models with welded regions were studied.  This was 

accomplished by using 2D cutting planes at the slices where a welded region begins and 

ends, as we traverse the model along the slice axis.  The corresponding locations of these 2D 

planes were found on both the reference model and all 10 registrations of the generic model.  

Figure 5.27 illustrates the sections of hybrid, generic model, and reference models and the 

respective deviation results are shown in Table 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27. (a) Section of hybrid model, (b) Section of generic model, 
and (c) Section of reference model 
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Femur (Section) 
Type: Hybrid Generic 1 Generic 2 Generic 3 Generic 4 Generic 5 
Max: 0.2621 0.2887 0.2904 0.3004 0.3077 0.2890 
Average: 0.0330 0.0609 0.0601 0.0596 0.0593 0.0605 
Std dev: 0.0368 0.0486 0.0496 0.0492 0.0478 0.0484 
RMS: 0.0494 0.0779 0.0779 0.0773 0.0762 0.0774 
Type:  Generic 6 Generic 7 Generic 8 Generic 9 Generic 10 
Max:  0.2901 0.3022 0.2988 0.3270 0.3075 
Average:  0.0595 0.0591 0.0617 0.0594 0.0595 
Std dev:  0.0484 0.0494 0.0501 0.0479 0.0494 
RMS:  0.0767 0.077 0.0795 0.0763 0.0773 

Pelvis (Section) 
Type: Hybrid Generic 1 Generic 2 Generic 3 Generic 4 Generic 5 
Max: 0.2353 0.4124 0.4047 0.4071 0.3825 0.3652 
Average: 0.0501 0.0787 0.0776 0.0823 0.0798 0.0746 
Std dev: 0.0352 0.0603 0.0580 0.0645 0.0627 0.0567 
RMS: 0.0612 0.0991 0.0969 0.1046 0.1015 0.0937 
Type:  Generic 6 Generic 7 Generic 8 Generic 9 Generic 10 
Max:  0.4003 0.4229 0.3614 0.3634 0.3557 
Average:  0.0767 0.0753 0.0786 0.0806 0.0780 
Std dev:  0.0603 0.0594 0.0601 0.0604 0.0592 
RMS:  0.0976 0.0959 0.0990 0.1007 0.0980 

Unit: inch (x 25.4 millimeter) 
 

 

 

 

 

 

 

 

 

 

  

Figure 5.28 shows that the maximum and average surface deviation of the hybrid 

model is still lower than all registered generic models when considering only the welded 

regions.   For the femur model, the maximum surface deviation from hybrid sections is 10-
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Figure 5.28. (a) Maximum surface deviation and (b) Average surface deviation 
of hybrid model and registered generic models for weld sections 

Table 5.4. Surface deviation of hybrid model and registered generic models 
for weld sections 
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20% lower than that of generic sections and the average deviation is 55-56% lower.  For the 

pelvis model, the maximum surface deviation of hybrid sections is 34-44% lower than that of 

generic sections and the average deviation is 33-39% lower.  For all cases, the standard 

deviation and RMS of the hybrid section is lower than those of generic sections.       

5.7.3.3. Part III 

 From the overall results in Part I and II, it is consistently shown that the hybrid model 

is a better approximation than the generic model.  However, it can be observed that the 

repaired surfaces of hybrid model look less appealing to utilize as a finished model.  Thus, an 

attempt to improve the current hybrid model was conducted by using simple global 

smoothing techniques, in this case a tool available in Rapidform software.  Figure 5.29 

illustrates the hybrid model before and after the global smoothing tool was applied. 

    

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.29. Hybrid model with smooth operation: (a) non-
smooth, (b) smooth 50% of weight, and (c) 
smooth 100% of weight 
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The surface deviation of the smoothed hybrid model and sections was individually 

computed for the femur and pelvis (Table 5.5).   

 Hybrid Femur (Model) Hybrid Pelvis (Model) 
Type: Non-

smooth 
Smooth 

50% 
Smooth 
100% 

Non-
smooth 

Smooth 
50% 

Smooth 
100% 

Max: 0.2596 0.2565 0.2504 0.2273 0.2263 0.2067 
Average: 0.0225 0.0254 0.0324 0.0408 0.0408 0.0414 
Std dev: 0.0242 0.0234 0.0258 0.0278 0.0280 0.0286 
RMS: 0.0330 0.0345 0.0414 0.0494 0.0495 0.0503 
 Hybrid Femur (Section) Hybrid Pelvis (Section) 
Type: Non-

smooth 
Smooth 

50% 
Smooth 
100% 

Non-
smooth 

Smooth 
50% 

Smooth 
100% 

Max: 0.2621 0.2565 0.2504 0.2353 0.2263 0.2297 
Average: 0.0330 0.0354 0.0431 0.0501 0.0498 0.0487 
Std dev: 0.0368 0.0336 0.0348 0.0352 0.0351 0.0333 
RMS: 0.0494 0.0488 0.0554 0.0612 0.0610 0.0590 

Unit: inch (x 25.4 millimeter)
 

As shown in Table 5.5, although the smoothed models may be more appealing, it 

does little to improve the fitting accuracy of the model.  The maximum surface deviation may 

decrease but the average surface deviation actually tended to increase.  Over smoothing could 

actually degrade the model instead of improving it; however, a reduction in maximum 

deviation could be beneficial to the success of low level segmentation methods and 

obviously, the models look better.   

 

5.8. Conclusions and Future work 

 This paper presented a new approach to automated high-level segmentation for 

medical images of bone joint structures.  The method employs a generic CAD model as 

anatomical knowledge to substitute that of medical experts/technicians.  A slice model was 

utilized to simplify the geometric analysis, and adding to its more robust and reliable natures.    

The paper focused methods that detects and repair unintended geometry of the object model 

Table 5.5. Surface deviation of hybrid model and smooth hybrid model 
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caused by virtual welding of bone joints by comparing to a properly segmented generic 

model.  The method provides a set of hybrid slices that contain most of the object model, but 

also sections cut from the generic model used to repair removed welds.  The hybrid results 

(either 2D or 3D) can be used for direct approximation of separated bone joint models or can 

also be iterated as a feedback for low-level segmentation to avoid the welding problem in the 

first place.  Utilizing hybrid results for low-level segmentation provides the following 

advantages: 1) the results are automatically registered to the object in CT images since the 

hybrid model is grown from the object model, and 2) only repaired regions of the hybrid 

results are required to find optimal solution in low-level segmentation because other portions 

were already derived successfully from the object model.    

Although the method proved functional and shows significant improvements, there 

are areas for future research.  Future work could include automated smoothing algorithms in 

specific areas where the welded regions were replaced.  In stead of smoothing the entire 

model surfaces, a method based on the curvature of the good (object) surfaces could be used 

to further transform the partial generic segments.  The current approach could obviously be 

applied to a variety of bone joints, as one may expect subtle nuances of each joint to dictate 

at least minor modifications to the strategy.  In this paper, we suggest that the hybrid model 

results can be used as feedback to the initial low-level segmentation; however, we do not 

propose how this implementation would work.  The future work could investigate would 

need to determine how the hybrid contours are fed to low-level segmentation methods found 

in the literature on 2D approaches.  Similarly, one would need to determine whether to input 

the hybrid model completely as a 3D shape or if partial sections should be carved from the 

model that only represent the welded regions.   
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This work will impact efforts in complete automation of both low and high level 

segmentation.  Granted, when medical experts are available, manual segmentation of these 

troublesome regions is quite successful, and other nearly automated methods in the literature 

have been very successful.  However, as 3D medical imaging and personalized medicine 

become ubiquitous, creative new methods that completely automate these processes will be 

necessary in order to provide both available and low-cost health services. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

 

 Automated high-level segmentation is a desired method for 3D medical imaging and 

could be a key to develop a fully automatic segmentation and reconstruction system.  The 

method is most valuable for non medical users involved in reconstructing models but 

generally reduces the amount of time and human intervention required for this task.  Some 

potential uses involve rapid prototyping processes intended to provide timely manufacturing 

of medical implants at lower costs.  However, existing approaches for high-level 

segmentation typically require human intervention.  In this research, a new methodology for 

high-level segmentation is presented.  Rather than trying to offer a solution for segmenting 

medical images, the proposed method first allows errors in the reconstructed model and later 

removes these errors without the help of a medical expert/technician; allowing for a 

completely automated approach. 

The proposed method employs a generic model as prior knowledge for high-level 

segmentation.  As part of automated system, an object model is reconstructed from patient’s 

data and accepted errors (welded regions) on the model.  A slice model representation is used 

to transform welded regions from 3D surfaces to 2D contours.  The proposed method covers 

two major processes for automated high-level segmentation: 1) sliced model registration and 

2) weld removal processes.  The sliced model registration process analyzes slices of generic 

and object models and locates corresponding sections of the two models.  Next, it identifies 

the closest match of generic slices to individual object slices.  The weld removal process 

utilizes the matches of generic slices and object slices to remove and repair welded regions.  

The final results have contours of individual bones successfully separated.  
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 Although a feasible result can be obtained with the current method, several 

opportunities remain for improvement in future research.  One could explore the use of 

generic slices with smaller thickness to expand the number of slices for matching.  This may 

help capturing variability of shapes of object slices with more example patterns of generic 

slices.  The computational cost can be reduced by only applying the method to sections of 

generic model that corresponds to welded regions on object model.   

 Instead of using generic slices for repairing welded regions in weld removal process, 

a future method may utilize the separated contours of previous object slices.  The advantage 

of using previous object slices is that the continuity of contours can be maintained, especially 

where the welded regions are repaired.  Some additional algorithms would be required 

including detecting topological changes and recognizing an appearance/disappearance of 

individual bones.  The method could compare object slices to previous fixed object slices and 

matching generic slices, and then decide if the previous slice or generic slice is better. 

 The proposed method may also need to be examined with more number of test 

subjects and expanded for a variety of joints (e.g. knee, ankle, shoulder, or elbow).  The 

method in current research was proved to be feasible with human hip joint; however, 

additional test samples may be required to investigate the robustness of algorithm among a 

variation of individuals.  In order to utilize the method with different joints, additional 

algorithms may be required.  For example, the object model of a knee joint which consists of 

femur, patella (knee cap), tibia and fibula may need to be divided into two groups: 1) an 

upper group consisting of femur and patella, and 2) a lower group consisting of tibia and 

fibula. 
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The other improvement can take an advantage of using a CAD model by varying the 

orientation of the model slicing to maximize the number of landmarks.  In the current 

research, the object and generic models are sliced with the same direction as the direction of 

medical imaging. This provides a convenience in feeding back the results to segment scan 

images; however, more effective landmarks may be revealed by slicing the models along 

other directions.    

 Utilizing the results of this research in low-level segmentation needs to be further 

explored.  Several techniques in low-level segmentation including snake, deformable 

contour, deformable model, active shape contour, and active shape model generally require 

the initial 2D contour or 3D model to be close to the target objects.  The proposed method 

can be utilized as a preprocessing step to create initial contours or models for these 

techniques.   Since the results of the proposed method have the location of object preserved, 

the contour or model could automatically align with the object in scan images.   

 Lastly, future work should explore using the proposed method to separate the joints 

that are degraded by disease such as degenerative arthritis.  The images of these joints 

usually show weak bone edges or touching of adjacent bones.  It is difficult to identify the 

bone edges even through visual inspection.  The method in this research can employ the 

generic model from patients who have similar degeneration and level of severity.   After the 

joints are separated and repaired using the proposed method, the result should be verified if it 

is acceptable to employ in general practice. 
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